Matematică, întrebare adresată de pocaiala14, 8 ani în urmă

in triunghiul abc cu m(a)=90 pe catetele AB si AC se construiesc in exterior triunghiurile dreptunghice ososcele triunhhiului ABD si triunghiului ACE m(d)=m(e)=90 . Demonstrati ca a)A-D-E- COLINIARE. b)BD\\CE
DAU COROANA +40 DE PUNCTE!!!
E SUPER URGENT​

Răspunsuri la întrebare

Răspuns de augustindevian
3

Răspuns:

Explicație pas cu pas:

Anexe:
Răspuns de nicumavro
0

Răspuns:

Explicație pas cu pas:

deoarece triunghiurile exterioare sunt dreptunghice isoscele, rezulta ca unghiurile ascutite sunt de 45 grade in fiecare dintre ele

deci avem ca ∡DAB+BAC+CAE=45+90+45=180 grade ceea ce inseamna ca DA si AE sunt in prelungire, adica EAD sunt coliniare

b.

dreptele DB si EC sunt taiate de secanta DE, care determina pe acestea unghiuri interne, de aceeasi parte a secantei, egale cu 90, deci dreptele sunt paralele (cf teoremelor din paralelism!)

Alte întrebări interesante