In triunghiul ABC echilateral , AD perpendicular BC, D apartine BC . Stiind ca E este mijlocul laturii AB , arata ca :
a) triunghiul BEC este dreptunghic
b) triunghiul BDE este echilateral
c) DE || AC
VĂ ROG SĂ MĂ AJUTAȚI . CEL MAI RAPID RASPUNS PRIMESTE INIMIOARA 5 STALE SI COROANA !!!!!!
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
Deci iti explic cum sa desenezi ca eu nu pot sa iti arat.
Desenezi un triunghi echilateral.
ABC- triunghi echilateral
Din unghiul A- trasezi un segment pana pe mijlocul laturii BC.
Pe mijlocul laturii AB notezi punctul E
Din punctul E trasezi alt segment pana in unghiul C si obtii triunghi dreptunghic. (a)
Pe latura AC trasezi din mijloc pana in punctul D alt segment. Asa obtii alt triunghi mai mic echilateral si cu latura DE ll AC (b,c)
Sper ca te-am ajutat si sper ca ai inteles cum am explicat:/
As fi facut desen dar sunt pe laptop:)
a) CE-mediană în ΔABC-echilateral ⇒CE -înălțime ⇒ CE ⊥ AB ⇒
⇒ ΔBEC -dreptunghic în E.
b) DE- mediană corespunzătore ipotenuzei în ΔBDA,
dreptunghic în D ⇒ DE = AB/2=EB ⇒ ΔEBD -isoscel (1)
ΔABC-echilateral ⇒m(∡B)= 60° (2)
(1), (2) ⇒ ΔBDE-echilateral.
c) CE-mediană ⇒ E este mijlocul laturii AB (3)
AD -înălțime în ΔABC-echilateral ⇒ AD-mediană ⇒
⇒ D=mijlocul laturii BC (4)
(3),( 4) ⇒ DE -linie mijlocie în ΔABC ⇒ DE || AC.