inductia matematica pt. 7+10+13+...+3n+4=n(3n+11)/2
Ms!!!!!!!!!!!!!!
Răspunsuri la întrebare
Salut !
Fie propozitia p(n): 7+10+13+....+3n+4 = n(3n+11)/2 pt ∀ n∈N*
-Etape-
I:Verificare : pentru n=1 avem 3+4=(3+11)/2 ⇔7=14/2 - A (adevarat)
II:Demonstrare : presupunem ca p(k)-A , k∈N*
Demonstram ca p(k+1) → p(k) ,adica p(k+1)-A
Avem:
p(k) = 7+10+....+3k+4 = k·(3k+11)/2
p(k+1) = 7+10+...+3k+4 + 3(k+1)+4 = (k+1)·[3(k+1)+11]/2
7+10+...+3k+4 + 3(k+1)+4 = (k+1)·[3k+3+11]/2
|_________|
║
p(k) + 3k+3+4 = (k+1)·[3k+14]/2
k·(3k+11)/2 + 3k+7 = (3k²+3k+14k+14)/2
(3k²+11k)/2 + 3k+7 = (3k²+17k+14)/2
(3k²+11k)/2 + (6k+14)/2 = (3k²+17k+14)/2 | · 2
3k²+11k + 6k+14 = 3k²+17k+14
3k²+17k+14 = 3k²+17k+14 | - 3k²-17k-14
0 = 0 - A
↓
p(k+1) → p(k) → Presupunerea facuta este adevarata
↓
7+10+13+...+3n+4=n(3n+11)/2 ∀ n ∈N*