Matematică, întrebare adresată de URunDEAD, 9 ani în urmă

integral_0^pi x*sinx/(3+cos^2(x))dx

Anexe:

Răspunsuri la întrebare

Răspuns de Rayzen
2

\displaystyle \int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\,dx =\int_{0}^{\pi}\dfrac{(0+\pi - x)\sin(0+\pi-x)}{3+\cos^2(0+\pi-x)}\, dx = \\ \\ =\int_{0}^{\pi}\dfrac{(\pi-x)\sin x}{3+\cos^2 x}\, dx = \int_{0}^{\pi}\dfrac{\pi\sin x}{3+\cos^2 x}\, dx -\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx \\ \\ \\ \\ \Rightarrow \int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx+\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx = \int_{0}^{\pi}\dfrac{\pi \sin x}{3+\cos^2 x}\, dx

\displaystyle 2\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx= -\pi\int_{0}^{\pi}\dfrac{(\cos x)'}{\cos^2 x+(\sqrt 3)^2}\, dx\\ \\ \\ 2\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx= -\dfrac{\pi}{\sqrt 3}\arctan\Big(\dfrac{\cos x}{\sqrt 3}\Big)\Big|_{0}^\pi\\ \\ 2\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx = \dfrac{\pi}{\sqrt 3}\arctan\Big(\dfrac{1}{\sqrt 3}\Big)+\dfrac{\pi}{\sqrt 3}\arctan\Big(\dfrac{1}{\sqrt 3}\Big)

\displaystyle 2\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx= \dfrac{\pi}{\sqrt 3}\cdot \dfrac{\pi}{6}+ \dfrac{\pi}{\sqrt 3}\cdot \dfrac{\pi}{6}\\ \\ 2\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx = \dfrac{2\pi^2}{6\sqrt 3}\\ \\ \Rightarrow \boxed{\int_{0}^{\pi}\dfrac{x\sin x}{3+\cos^2 x}\, dx= \dfrac{\pi^2}{6\sqrt 3}}

\text{M-am folosit de formula lui King:}\\ \\ \displaystyle \int_{a}^bf(x)\, dx = \int_{a}^bf(a+b-x)\, dx


URunDEAD: Multumesc mult! Nu stiam de aceasta formula
URunDEAD: Foarte rapid raspunsul
Rayzen: Cu placere !
Rayzen: Daca nu era integrala definita nu se putea calcula.
Decat prin numere complexe.
URunDEAD: Desi suna incitant, inca nu am avut niciodata de-a face cu numere complexe in integrale. Multumesc din nou pentru răspunsul rapid și detaliat
Rayzen: Integrala definita e asta:

2i((√−4√3−7(5⋅332−26)+(√3−2)√−260⋅332−1351)(−2(ln(−√4√3−7)ln(∣∣eix+√4√3−7∣∣)+Li2(−eix−√4√3−7√4√3−7))+ln(4√3−7)ln(∣∣eix−√4√3−7∣∣)+2Li2(eix+√4√3−7√4√3−7))+(−(√3+2)√260⋅332−1351−√4√3−7(5⋅332+26))(−2(ln(−√−4√3−7)ln(∣∣eix+√−4√3−7∣∣)+Li2(−eix−√−4√3−7√−4√3−7))+ln(−4√3−7)ln(∣∣eix−√−4√3−7∣∣)+2Li2(eix+√−4√3−7√−4√3−7)))(√−260⋅332−1351−√−4√3−7(4√3−7))(√260⋅332−1351+√4√3−7(4√3+7))+C

Nici eu nu am numere complexe in integrale.
De obicei calculatorul se ocupa de calculul lor.
Rayzen: nu am avut*
Rayzen: integrala nedefinita*
Alte întrebări interesante