Matematică, întrebare adresată de bobolino2, 8 ani în urmă

Inversa matricei A(-1) in M3(IR),uregent!

Anexe:

Răspunsuri la întrebare

Răspuns de abc112
3
A(a)=\begin{pmatrix}<br />a&amp; 1 &amp;1 \\ <br />1&amp; a &amp; 1\\ <br />1&amp; 1 &amp; a<br />\end{pmatrix}

A( - 1)=\begin{pmatrix}<br />- 1&amp; 1 &amp;1 \\ <br />1&amp; - 1 &amp; 1\\ <br />1&amp; 1 &amp; - 1<br />\end{pmatrix}

detA(-1)=\begin{vmatrix}<br />-1&amp; 1 &amp; 1\\ <br />1&amp; -1 &amp; 1\\ <br />1&amp; 1&amp; -1 <br />\end{vmatrix}

detA(-1)=-1 \times (-1) \times (-1)+1 \times 1 \times 1+1 \times 1 \times 1-1 \times (-1) \times 1-1 \times 1 \times (-1)-(-1) \times 1 \times 1<br />

detA( - 1)=-1+1+1+1+1+1<br />

detA( - 1) = 4 \: \neq \: 0 = &gt; A( - 1) \:este \: inversabila=&gt;\exists\:{A(-1)}^{-1}

{A(-1)}^{t}=\begin{pmatrix}<br />- 1&amp; 1&amp; 1\\ <br />1 &amp; - 1&amp; 1\\ <br />1&amp; 1 &amp; - 1<br />\end{pmatrix} = {A(-1)}^{t}=A( - 1)

 A(-1)_{11}={(-1)}^{1+1}\times\begin{vmatrix}<br />- 1&amp; 1\\ <br />1 &amp; - 1<br />\end{vmatrix} = 1 \times (1 - 1) = 1 \times 0 = 0

A(-1)_{12}={(-1)}^{1+2}\times\begin{vmatrix}<br />1&amp;1 \\ <br />1&amp; - 1<br />\end{vmatrix} = - 1 \times ( - 2) = 2

A(-1)_{13}={(-1)}^{1+3}\times\begin{vmatrix}<br />1&amp; - 1\\ <br />1 &amp; 1<br />\end{vmatrix} = 1 \times( 1 + 1) = 1 \times 2 = 2

A(-1)_{21}={(-1)}^{2+1}\times\begin{vmatrix}<br />1&amp; 1\\ <br />1&amp; - 1<br />\end{vmatrix} = - 1 \times ( - 1 - 1) = - 1 \times ( - 2) = 2

A(-1)_{22}={(-1)}^{2+2}\times\begin{vmatrix}<br />- 1&amp;1 \\ <br />1&amp; - 1<br />\end{vmatrix} = 1 \times (1 - 1) = 1 \times 0 = 0

A(-1)_{23}={(-1)}^{2+3}\times\begin{vmatrix}<br />- 1&amp; 1\\ <br />1 &amp; 1<br />\end{vmatrix} = - 1 \times ( - 1 - 1) = - 1 \times ( - 2) = 2

A(-1)_{31}={(-1)}^{3+1}\times\begin{vmatrix}<br />1&amp; 1\\ <br />- 1&amp; 1<br />\end{vmatrix} = 1 \times (1 + 1) = 1 \times 2 = 2

A(-1)_{32}={(-1)}^{3+2}\times\begin{vmatrix}<br />- 1&amp;1 \\ <br />1&amp; 1<br />\end{vmatrix} = - 1 \times ( - 1 - 1) = - 1 \times ( - 2) = 2

A(-1)_{33}={(-1)}^{3+3}\times\begin{vmatrix}<br />- 1&amp; 1\\ <br />1&amp; - 1<br />\end{vmatrix} = 1 \times (1 - 1) = 1 \times 0 = 0

{A(-1)}^{*}=\begin{pmatrix}<br />A(-1)_{11}&amp; A(-1)_{12} &amp;A(-1)_{13} \\ <br />A(-1)_{21} &amp; A(-1)_{22} &amp;A(-1)_{23} \\ <br />A(-1)_{31} &amp;A(-1)_{32} &amp; A(-1)_{33}<br />\end{pmatrix}

{A(-1)}^{*} = \begin{pmatrix}<br />0&amp; 2 &amp; 2\\ <br />2&amp; 0 &amp;2 \\ <br />2&amp; 2 &amp; 0<br />\end{pmatrix}

{A(-1)}^{-1}=\frac{1}{detA(-1)}\times{A(-1)}^{*}

{A(-1)}^{-1} = \frac{1}{4} \begin{pmatrix}<br />0&amp; 2 &amp; 2\\ <br />2&amp; 0 &amp;2 \\ <br />2&amp; 2 &amp; 0<br />\end{pmatrix}

{A(-1)}^{-1} = \begin{pmatrix}<br />0&amp; \frac{2}{4} &amp; \frac{2}{4} \\ <br />\frac{2}{4} &amp; 0 &amp; \frac{2}{4} \\ <br />\frac{2}{4} &amp; \frac{2}{4} &amp; 0<br />\end{pmatrix}

{A(-1)}^{-1} = \begin{pmatrix}<br />0&amp; \frac{1}{2} &amp; \frac{1}{2} \\ <br />\frac{1}{2} &amp; 0 &amp; \frac{1}{2} \\ <br />\frac{1}{2} &amp; \frac{1}{2} &amp; 0<br />\end{pmatrix}

bobolino2: Un raspuns mai simplificat nu puteai sa dai?
Alte întrebări interesante