Matematică, întrebare adresată de ioana2861, 8 ani în urmă

le am pana azi la 9, urgent plssss​

Anexe:

Răspunsuri la întrebare

Răspuns de nnanamin
1

Răspuns:

aici ai rezolvarea....

Anexe:
Răspuns de stancescuflorin741
0

Răspuns:

4)a)x =  \frac{2 \sqrt{24} }{ \sqrt{54}  -  \sqrt{2}( \sqrt{27}   -  \sqrt{6}) }  \times  \sqrt{2}  \\ x =  \frac{2 \times  \sqrt{4 \times 6} }{ \sqrt{9  \times 6} -  \sqrt{2}( \sqrt{9 \times 3}    -  \sqrt{6}) }  \times  \sqrt{2}  \\ x =  \frac{2 \times  \sqrt{4} \times  \sqrt{6}  }{ \sqrt{9}  \times  \sqrt{6}  -  \sqrt{2}( \sqrt{9} \times  \sqrt{3}  -  \sqrt{6} )   }  \times  \sqrt{2}  \\ x =  \frac{2 \times 2 \times  \sqrt{6} }{3 \times  \sqrt{6} -  \sqrt{2}(3 \times  \sqrt{3}  -  \sqrt{6})   }  \times  \sqrt{2}  \\ x =  \frac{4 \sqrt{6} }{3 \sqrt{6}  - 3 \sqrt{6} +  \sqrt{12}  }  \times  \sqrt{2}  \\ x =  \frac{4 \sqrt{6} }{ \sqrt{4 \times 3} }  \times  \sqrt{2}  \\ x =  \frac{4 \sqrt{6} }{ \sqrt{4}  \times  \sqrt{3} }  \times  \sqrt{2}  \\ x =  \frac{4 \sqrt{6} }{2 \sqrt{3} }  \times  \sqrt{2}  \\ x = 4 \sqrt{6}  \div 2 \sqrt{3}  \times  \sqrt{2}  \\ x = 2 \sqrt{2}  \times  \sqrt{2 }  \\ x = 2 \sqrt{4}  = 2 \times 2 = 4

b)y =  \sqrt{147} ( \frac{1}{ \sqrt{3}     }  +  \frac{1}{ \sqrt{7} } ) +  \sqrt{28}  \times ( \frac{1}{ \sqrt{7}  }  -  \frac{ \sqrt{3} }{2} ) \\ y =  \frac{ \sqrt{147} }{ \sqrt{3} }  +  \frac{ \sqrt{147} }{ \sqrt{7} }  +  \frac{ \sqrt{28} }{ \sqrt{7} } -  \frac{ \sqrt{84} }{2}   \\ y =  \frac{ \sqrt{49} }{1}  +  \frac{ \sqrt{21} }{1}  +  \frac{ \sqrt{4} }{1}  -  \frac{ \sqrt{4 \times 21} }{2}  \\ y = 7 +  \sqrt{21}  + 2 -  \frac{ \sqrt{4} \times  \sqrt{21}  }{2}  \\ y = 9 +  \sqrt{21}   -  \frac{2 \sqrt{21} }{2}  \\ y = 9 +  \sqrt{21}  -  \sqrt{21}   \\ y = 9

mg =  \sqrt{x \times y}  =  \sqrt{4 \times 9}  =  \sqrt{36}  = 6

5)a)x = 3 \sqrt{2} ( \sqrt{50} +  \sqrt{72}   -  \sqrt{200} ) \\ x = 3 \sqrt{2} ( \sqrt{25 \times 2}  +  \sqrt{36 \times 2}  -  \sqrt{100 \times 2} ) \\ x = 3 \sqrt{2} ( \sqrt{25}  \times  \sqrt{2}  +  \sqrt{36}  \times  \sqrt{2}  -    \sqrt{100}  \times  \sqrt{2} ) \\ x = 3 \sqrt{2} (5 \sqrt{2}  + 6 \sqrt{2}  - 10 \sqrt{2} ) \\ x = 3 \sqrt{2}  \times  \sqrt{2}  = 3 \sqrt{4}  = 3 \times 2 = 6

b)y = ( \frac{1}{3 \sqrt{3} }  +  \frac{1}{2 \sqrt{3} } ) \times  \sqrt{300}  \div  \frac{1}{3 \sqrt{36} }  \\  y = ( \frac{ \sqrt{300} }{3 \sqrt{3} }  +  \frac{ \sqrt{300} }{2 \sqrt{3} } ) \times 3 \sqrt{36}  \\ y = ( \frac{ \sqrt{100} }{3}  +  \frac{ \sqrt{100} }{2} ) \times 3 \sqrt{36}  \\  y = ( \frac{10}{3}  +  \frac{10}{2} ) \times 3 \times 6 \\ y = ( \frac{20}{6}  +  \frac{30}{6} ) \times 18 \\ y =  \frac{50}{6}  \times 18 \\ y = 50 \times 3 = 150 \\ mg =  \sqrt{x \times y}  =  \sqrt{6 \times 150}  =  \sqrt{900}  = 30


stancescuflorin741: ah s a cerut media aritmetica
stancescuflorin741: eu am făcut pe cea geometrica =))
Alte întrebări interesante