Matematică, întrebare adresată de R3dV1p3r, 9 ani în urmă

lim    \frac{ln(x)}{x}
x->0
x>0

Răspunsuri la întrebare

Răspuns de Utilizator anonim
1

\it  \lim \ \ \dfrac{lnx}{x}= \dfrac{-\infty}{0_+}=-\infty \\x\rightarrow0\\x>0



tcostel: Rezolvare gresita.
Răspuns de Rayzen
1
 \text{ln}x = t \Rightarrow x = e^t \\ \\ x \to 0 \Rightarrow e^t \to 0 =  t \to -\infty\\ \\ \Rightarrow \underset{x>0}{ \lim\limits_{x \to 0}}\dfrac{\text{ln}x}{x} = \lim\limits_{t \to -\infty} \dfrac{t}{e^t} = \\ \\ = \dfrac{-\infty}{e^{-\infty}} = \dfrac{-\infty}{0_+} = -\infty
Alte întrebări interesante