Matematică, întrebare adresată de claudiuc825, 8 ani în urmă

Logaritmi : Nu prea știu cum sa fac ex 1. Ma puteți ajuta? (dacă mi-ați putea și explica)

Anexe:

Răspunsuri la întrebare

Răspuns de tcostel
1

 

\displaystyle\bf\\ 1)\\\\a)\\\\log_{12}(288)-log_{12}(2)+log_2(lg(100))=\\\\=log_{12}\left(\frac{288}{2}\right)+log_2(2)\\\\\\=log_{12}(144)+log_2(2)=\\\\=log_{12}(12^2)+log_2(2)=2+1=\boxed{\bf3}

.

\displaystyle\bf\\b)\\\\log_3\left(9\sqrt[\b4]{27\sqrt[\b5]{81} } \right)=\\\\\\=log_3\left(3^2\sqrt[\b4]{3^3\sqrt[\b5]{3^4} } \right)=\\\\\\=log_3\left(3^2\sqrt[\b4]{3^3\times3^\dfrac{4}{5}} \right)=\\\\\\=log_3\left(3^2\sqrt[\b4]{3^3\times3^\dfrac{4}{5}} \right)=\\\\\\=log_3\left(3^2\sqrt[\b4]{3^{\b3+\dfrac{4}{5}}} \right)=\\\\\\=log_3\left(3^2\sqrt[\b4]{3^{\dfrac{3\times5+4}{5}}} \right)=\\\\\\=log_3\left(3^2\sqrt[\b4]{3^{\dfrac{19}{5}}} \right)=

.

\displaystyle\bf\\=log_3\left(3^\b2}\times3^{\dfrac{19}{5\times4}}\right)=\\\\\\=log_3\left(3^\b2}\times3^{\dfrac{19}{20}}\right)=\\\\\\=log_3\left(3^{\dfrac{19}{20}+2}\right)=\\\\\\=log_3\left(3^{\dfrac{19+2\times20}{20}}\right)=\\\\\\=log_3\left(3^{\dfrac{59}{20}}\right)=\\\\\\\frac{59}{20}log_3\Big(3\Big)=\frac{59}{20}\times1=\boxed{\bf\frac{59}{20}}

 

 

 

Alte întrebări interesante