Ma puteti ajuta ??????
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
a)
b)
c)
f)
Răspuns:
Explicație pas cu pas:
Domeniul de definitie il afli punand conditia ca numitorul fractiei sa fie diferit de 0.
a)
x^2 - 81 = 0
x^2 = 81
x1 = 9
x2 = -9
x ∈ R \ {-9, 9}
x^2 - 18x + 81 = (x - 9)^2
x^2 - 81 = (x + 9)(x - 9)
fractia devine
(x - 9)^2/(x + 9)(x - 9) = (x - 9)/(x + 9)
b)
x^2 - 12x + 36 = 0
(x - 6)^2 = 0
x = 6
x ∈ R \ {6}
x^2 - 36 = (x + 6)(x - 6)
fractia devine
(x + 6)(x - 6) / (x - 6)^2 = (x + 6)/(x - 6)
c)
x^2 + 16x + 64 = (x + 8)^2
(x + 8)^2 = 0
x = -8
x ∈ R \ {-8}
x^2 - 64 = (x + 8)(x - 8)
fractia devine
(x + 8)(x - 8) / (x + 8)^2 = (x - 8)/(x + 8)
d)
x^3 - 25x = 0
x*(x^2 - 25) = 0
x*(x + 5)*(x - 5) = 0
x ∈ R \ {-5; 0; 5}
x^2 + 10x + 25 = (x + 5)^2
fractia devine
(x + 5)^2 / x*(x + 5)*(x - 5) = (x + 5) / x*(x - 5)
e)
x^3 + 14x^2 + 49x = x*(x^2 + 14x + 49) = x*(x + 7)^2
x*(x + 7)^2 = 0
x ∈ R \ {-7; 0}
x^3 - 49x = x*(x^2 - 49) = x*(x + 7)*(x - 7)
fractia devine
x*(x + 7)*(x - 7) / x*(x + 7)^2 = (x - 7) / (x + 7)
f)
x^3 + 20x^2 + 100x = x*(x^2 + 20x + 100) = x*(x + 10)^2
x ∈ R \ {-10; 0}
x^4 - 100x^2 = x^2*(x^2 - 100) = x^2*(x - 10)(x + 10)
x^2*(x - 10)(x + 10) / x*(x + 10)^2 = x*(x - 10) / (x + 10)