Matematică, întrebare adresată de Ami450, 8 ani în urmă

Ma puteti ajuta va rog?
 \frac{1}{2}  + \frac{1}{6}  +  \frac{1}{12}  +  \frac{1}{20}  +  \frac{1}{30}  + ... +  \frac{1}{x(x  + 1)}  =  \frac{2018}{2019}

Răspunsuri la întrebare

Răspuns de Chris02Junior
1

Răspuns:

x = 2018.

Explicație pas cu pas:

1 / 1*2  +  1 / 2*3 + 1 / 3*4 + 1/ 4*5 + 1 / 5*6 + ... + 1 / x(x+1) =

1/1 - 1/2 +

1/2 - 1/3 +

1/3 - 1/4 +

1/4 - 1/5 +

1/5 - 1/6 +

- - - - - - - -

1/x - 1/(x+1) = unde se observa reducerile termenilor pe directii diagonale si ne ramane:

1 - 1(x+1).

1 - 1/(x+1) = 2018/2019

(x+1-1)/(x+1) = 2018/2019

x/(x+1) = 2018/2019

2019x = 2018(x+1)

2019x = 2018x + 2018

2019x - 2018x = 2018

x = 2018.


Ami450: mi ai putea explica te rog de la 1/1-1/2... te rog? Am inteles ca ai descompus numaratorii, dar nu inteleg cum a aparut -
Ami450: *numitorii
Chris02Junior: efectueaza calculele pe fiecare linie, aducand la acelai numitor si vei vedea ca dai tocmai peste termenii initiali ai primei sume
Alte întrebări interesante