Matematică, întrebare adresată de Pevy23, 8 ani în urmă

Metoda inductiei matematice va rog e urgent

Anexe:

VladStefan167: Ce manual de romana ai?
Pevy23: Nu am primit
Pevy23: Am culegere cct

Răspunsuri la întrebare

Răspuns de VladStefan167
2

Răspuns:) Pentru n = 1 egalitatea devine 1=1, prin urmare P(1) este adevarata. Presupunem ca egalitatea din enunt este adevarata, adica are loc egalitatea

,

si urmeaza sa verificam daca P(n + 1), adica

este justa. Cum (se tine seama de egalitatea din enunt)

se obtine

adica P(n + 1) este afirmatie justa.

Asadar, conform principiului inductiei matematice egalitatea din enunt este justa pentru orice n natural.

Nota 2. Mentionam ca acest exemplu poate fi rezolvat si fara utilizarea inductiei matematice. Intr-adevar, suma 1 + 2 + 3 + ... + n reprezinta suma primilor n termeni ai progresiei aritmetice cu primul termen a1 = 1 si ratia d = 1. In baza formulei cunoscute se obtine

b) Pentru n = 1 egalitatea devine 2·1 - 1 = 12 sau 1=1, astfel P(1) este justa. Presupunem justa egalitatea

1 + 3 + 5 + ... + (2n - 1) = n2

si urmeaza sa verificam daca are loc P(n + 1):

1 + 3 + 5 + ... + (2n - 1) + (2(n + 1) - 1) = (n + 1)2

sau

1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = (n + 1)2.

Se tine seama de egalitatea din enunt si se obtine

1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = n2 + (2n + 1) = (n + 1)2.

Asadar P(n + 1) este adevarata si, prin urmare, egalitatea din enunt este adevarata.

Nota 3. Similar exemplului precedent, se rezolva si fara a aplica metoda inductiei matematice.

c) Pentru n = 1 egalitatea este justa 1=1. Se presupune justa egalitatea

si se arata ca

adica P(n) adevarata implica P(n + 1) adevarata. In adevar

si cum 2n2 + 7n + 6 = (2n + 3)(n + 2) se obtine

si, prin urmare, egalitatea este adevarata.

d) Pentru n = 1 egalitatea este justa: 1=1. Se presupune ca are loc egalitatea

si se arata ca are loc egalitatea

In adevar, tinand seama de ipoteza

e) Propozitia P(1) este justa 2=2. Se presupune ca egalitatea

este adevarata si se arata ca ea implica egalitatea

In adevar

Asadar, egalitatea enuntata este justa pentru orice n natural.

f) P(1) este adevarata: 1/3 = 1/3. Se presupune ca are loc P(n):

si se arata ca aceasta egalitate implica egalitatea

In adevar, tinand seama de justetea afirmatiei P(n), se obtine

Prin urmare, egalitatea este demonstrata

Explicație pas cu pas:


Pevy23: Te pup frate
VladStefan167: . .
Alte întrebări interesante