Matematică, întrebare adresată de mamonovvlad, 9 ani în urmă

(n+1)!-n! \(n-1)!
Ajutați-mă!


Semaka2: cred ca n-ai pus parantezele corect
JolieJulie: totul e supra (n-1)! ?

Răspunsuri la întrebare

Răspuns de Semaka2
4

[(n+1)!-n!]/(n-1)!=

[n!*(n+1)-n!]/(n-1)!=

n!(n+1-1)/(n-1)!=

(n-1)!*n*n/(n-1)!=n²


JolieJulie: Ori am gresit eu,ori tu...
Răspuns de JolieJulie
13

\frac{(n+1)!-n!}{(n-1)!} =\\ \\\\ \\ \frac{(n-1)!*n*(n+1) -(n-1)!*n}{(n-1)!}=\\ \\\\ \\ \frac{(n-1)!*[n*(n+1)-n]}{(n-1)!}=\\ \\ \\ \frac{(n-1)!*(n^{2}+n-n)}{(n-1)!}=\\ \\ \\ \frac{(n-1)!*n^{2}}{(n-1)!}=n^{2}

Alte întrebări interesante