Matematică, întrebare adresată de arghirsabrina171, 8 ani în urmă

n=[3^3+(3^9x4-3^9):9^4-3^0]:[(5x5^2x5^3)^4:5^23]=​

Răspunsuri la întrebare

Răspuns de pav38
11

Răspuns: n = 7

Explicație pas cu pas:

Salutare!

\bf n=[3^{3}+(3^{9}\cdot4-3^{9}):9^{4}-3^{0}]:[(5\cdot5^{2}\cdot5^{3})^{4}:5^{23}]

\bf n=[3^{3}+3^{9}\cdot(4-3^{0}):(3^{2})^{4}-3^{0}]:[(5^{1+2+3})^{4}:5^{23}]

\bf n=[3^{3}+3^{9}\cdot(4-1):3^{2\cdot4}-1]:[(5^{6})^{4}:5^{23}]

\bf n=(3^{3}+3^{9}\cdot 3:3^{8}-1):(5^{6\cdot 4}:5^{23})

\bf n=(3^{3}+3^{9+1}:3^{8}-1):(5^{24}:5^{23})

\bf n=(3^{3}+3^{10}:3^{8}-1):(5^{24-23})

\bf n=(3^{3}+3^{10-8}-1):5^{1}

\bf n=(3^{3}+3^{2}-1):5

\bf n=(27+9-1):5

\bf n=35:5

\boxed{\bf n=7}

Formule pentru puteri

a⁰ = 1   sau  1 = a⁰

(aⁿ)ᵇ = aⁿ ˣ ᵇ    sau   aⁿ ˣ ᵇ = (aⁿ) ᵇ

aⁿ · aᵇ = (a · a) ⁿ ⁺ ᵇ    sau    (a · a) ⁿ ⁺ ᵇ = aⁿ · aᵇ

aⁿ : aᵇ = (a : a) ⁿ ⁻ ᵇ  sau  (a : a) ⁿ ⁻ ᵇ = aⁿ : aᵇ

aⁿ · bⁿ = (a · b)ⁿ   sau   (a · b)ⁿ = aⁿ · bⁿ

aⁿ : bⁿ = (a : b)ⁿ   sau   (a : b)ⁿ = aⁿ : bⁿ

==pav38==

Răspuns de pippa0
2

Explicație pas cu pas:

n = [ {3}^{3}  + ( {3}^{9}  \times 4 -  {3}^{9} ) \div  {9}^{4}  -  {3}^{0} ] \div [(5 \times  {5}^{2}  \times  {5}^{3} ) {}^{4}  \div  {5}^{23} ] =  \\ n = [27 + {3}^{9} \times ( 4 - 1) \div  ({3}^{2})^{4}  - 1] \div [( {5}^{3}  \times  {5}^{3} ) {}^{4}  \div {5}^{23} ] =  \\ n = [27 + {3}^{9} \times {3}^{} \div  {3}^{2×4}  - 1] \div [( {5}^{6} ) {}^{4}   \div   {5}^{23} ] =  \\ n = [27 + {3}^{10} \div {3}^{8}  - 1] \div ( {5}^{24}  \div  {5}^{23} ) =  \\ n = (27 +  {3}^{2}  - 1) \div 5 =  \\ n = (27 +  9  - 1)  \div 5 =  \\ n = (36 - 1) \div 5 =  \\ n = 35 \div 5 =    \\n = 7</p><p>

sper că te-am ajutat!

Alte întrebări interesante