n= 5^8+11^301+6^3001 nu este patrat perfect
va rog, repede
ioneteemilia00:
ebuie sa demonstrati
Răspunsuri la întrebare
Răspuns de
1
[tex]N=5^8+11^{301}+6^{3001}\\
u(5^8)=5\\
u(11^{301})=1\\
u(6^{3001})=6\\
N=...5+....1+...6\\
N=...2\\
Un\ patrat\ pefect\ nu\ poate\ avea\ ultima\ cifra\ 2.[/tex]
Răspuns de
1
5^8 se termina cu cifra 5; 11^301 se termina in 1; 6^3001 se termina in 6.
Rezulta: 5 +1 + 6 = ....2, adica N se termina cu cifra 2.
Un patrat perfect se poate termina cu 0, 1, 4, 5, 6 sau 9. Exemple: 1^2=1, 2^2=4, 3^2=9, 4^2=16, 5^2=25, 6^2=36, 7^2=49, 8^2=64, 9^2=81, 10^2=100 etc.).
Rezulta ca N nu poate fi patrat perfect.
Rezulta: 5 +1 + 6 = ....2, adica N se termina cu cifra 2.
Un patrat perfect se poate termina cu 0, 1, 4, 5, 6 sau 9. Exemple: 1^2=1, 2^2=4, 3^2=9, 4^2=16, 5^2=25, 6^2=36, 7^2=49, 8^2=64, 9^2=81, 10^2=100 etc.).
Rezulta ca N nu poate fi patrat perfect.
Alte întrebări interesante
Franceza,
8 ani în urmă
Engleza,
8 ani în urmă
Fizică,
8 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă
Istorie,
9 ani în urmă
Matematică,
9 ani în urmă