Matematică, întrebare adresată de tinagrigore25, 8 ani în urmă

n(n+1)/2 apartine lui N;


danboghiu66: da, daca n este numar natural. Deoarece n si (n+1) sint 2 numere consecutive. Deci cind n este impar, (n+1) este par si se divide cu 2. Si invers.

Răspunsuri la întrebare

Răspuns de Matei
2

Salut.

Dacă \displaystyle{\frac{n\cdot(n+1)}{2} \in \mathbb{N}} atunci n × (n + 1) se divide cu 2, deci este multiplu de 2.

M₂ = {0, 2, 4, 6, 8, etc...}

  • n × (n + 1) = 0 ⇒ n₁ = -1, n₂ = 0
  • n × (n + 1) = 2 ⇒ n₁ = (-1 - √17)/2, n₂ = (-1 + √17)/2

Și treaba asta continuă până la infinit, pentru că mulțimea multiplilor lui 2 este o mulțime infinită. Deci cred că ceva lipsește din cerință.

- Lumberjack25


danboghiu66: n(n+1)/2 este totdeauna numar natural, daca n este natural.
Matei: Corect, însă nu se specifică că n este natural.
danboghiu66: ok.....
Alte întrebări interesante