Matematică, întrebare adresată de anamarialiliana, 8 ani în urmă

Nu știu de câte ori sa mai pun ex ca sa mi se adauge un răspuns
Va implor din tot sufletul meu
Va rog mult
Orice sa știe cum se rezolva sa atașeze un răspuns
Fără Glume
Ajutor ❗️❗️❗️❗️❗️❗️

Anexe:

Răspunsuri la întrebare

Răspuns de Luke48
1

Salut!

Exercitiul 16:

\begin{aligned}\text{a)} \ x&=\frac23(4\sqrt2-\frac5{\sqrt2})\\x&=\frac23(4\sqrt2-\frac{5\sqrt2}{2})\\x&=\frac23 \cdot \frac{3\sqrt2}{2}\\x&=\sqrt2\end{aligned}

\begin{aligned}y&=(\sqrt6+\frac{\sqrt2}{\sqrt3})\div\frac2{\sqrt3}\\y&=\frac{\sqrt{18}+\sqrt2}{\sqrt3}\cdot\frac{\sqrt3}2\\y&=(3\sqrt2+\sqrt2)\frac12\\y&=\frac{4\sqrt2}2\\y&=2\sqrt2\end{aligned}

\begin{aligned}\Rightarrow \text{Media geometrica} &= \sqrt{xy}\\&=\sqrt{\sqrt2\cdot2\sqrt2}\\&=\sqrt{2\cdot2}\\&=2\end{aligned}

\begin{aligned}\text{b)}\ x&=\frac32(2\sqrt3-\frac4{\sqrt3})\\x&=\frac32(2\sqrt3-\frac{4\sqrt3}3)\\x&=\frac32\cdot\frac{2\sqrt3}3\\x&=\frac{2\sqrt3}2\\x&=\sqrt3\end{aligned}

\begin{aligned}y&=(\sqrt6+\frac{\sqrt3}{\sqrt2})\div\frac1{\sqrt2}\\y&=\frac{\sqrt{12}+\sqrt3}{\sqrt2}\cdot\sqrt2\\y&=2\sqrt3+\sqrt3\\y&=3\sqrt3\end{aligned}

\begin{aligned}\Rightarrow \text{Media geometrica}=&\sqrt{xy}\\=&\sqrt{\sqrt3\cdot3\sqrt3}\\=&\sqrt{3\cdot3}\\=&3\end{aligned}

Exercitiul 17:

\begin{aligned}\text{a)}\ x&=(\sqrt3+(3\sqrt3)^3)\div7\\x&=(\sqrt3+27\cdot3\sqrt3)\div7\\x&=(\sqrt3+81\sqrt3)\div7\\x&=82\sqrt3\div7\\x&=\frac{82\sqrt3}7\end{aligned}

\begin{aligned}y&=((\frac{\sqrt3}{\sqrt2}-\frac{\sqrt2}{\sqrt3})\div\frac1{\sqrt2})^3\\y&=((\frac{\sqrt3}{\sqrt2}-\frac{\sqrt2}{\sqrt3})\sqrt2)^{-1}\\y&=(\sqrt{3}-\frac{2}{\sqrt3})^3\\y&=(\frac{\sqrt3}3)^3\\y&=\frac{3\sqrt3}27\\y&=\frac{\sqrt3}9\end{aligned}

\begin{aligned}\Rightarrow \text{Media geometrica}=&\sqrt{xy}\\=&\sqrt{\frac{82\sqrt3}7\cdot\frac{\sqrt3}9\\=&\sqrt{\frac{246}{63}}\\=&\sqrt\frac{82}{21}\\=&\frac{\sqrt{1722}}{21}\end{aligned}

\begin{aligned}\text{b)}\ x&=(\sqrt2+(2\sqrt2)^3)\div3\\x&=(\sqrt2+16\sqrt2)\div3\\x&=17\sqrt2\div3\\x&=\frac{17\sqrt2}3\end{aligned}

\begin{aligned}y&=((\frac{\sqrt5}{\sqrt2}-\frac{\sqrt2}{\sqrt5})\div\frac3{\sqrt5})^3\\y&=((\frac{\sqrt5}{\sqrt2}-\frac{\sqrt2}{\sqrt5}\frac{\sqrt5}3)^3\\y&=(\frac{\frac5{\sqrt2}-\sqrt2}{3})^3\\y&=(\frac{\frac3{\sqrt2}}3)^3\\y&=(\frac1{\sqrt2})^3\\y&=(\frac{\sqrt2}2)^3\\y&=\frac{2\sqrt2}8\\y&=\frac{\sqrt2}4\end{aligned}

\begin{aligned}\Rightarrow \text{Media geometrica}=& \sqrt{xy}\\=& \sqrt{\frac{17\sqrt2}3\cdot\frac{\sqrt2}4}\\=& \sqrt\frac{17\sqrt2\sqrt2}{12}\\=& \sqrt\frac{34}{12}\\=& \sqrt\frac{17}6\\=& \frac{\sqrt{102}}6\end{aligned}

-Luke48

Alte întrebări interesante