Matematică, întrebare adresată de cristisambotin, 8 ani în urmă

Nu stiu sa le fac ??

Anexe:

Răspunsuri la întrebare

Răspuns de bemilian24
0

Răspuns:

,,,,,,,,,,,,,,,,,,,,

Anexe:
Răspuns de stancescuflorin741
0

Răspuns:

1) \sqrt{25}  -  \sqrt{9}  +  \sqrt{1}  = 5 - 3 + 1 = 3 \\ 2 \times  \sqrt{100}  -  \sqrt{36}  - 3 \times ( \sqrt{25}  +  \sqrt{16} ) \div  \sqrt{36}  =  \\  = 2 \times 10 - 6 - 3 \times (5 + 4) \div 6 =  \\  = 20 - 6 - 3 \times 9 \div 6 =  \\  = 20 - 6 - 27 \div 6 = 20 - 6 -  \frac{27}{6}  = 20 - 6 -  \frac{9}{2}  =  \frac{40}{2}  -  \frac{12}{2}  -  \frac{9}{2}  =  \frac{17}{2}

2)2 \sqrt{5}  =  \sqrt{ {2}^{2}  \times 5}  =  \sqrt{4 \times 5}  =  \sqrt{20}  \\ 4 \sqrt{2}  =  \sqrt{ {4}^{2} \times 2 }  =  \sqrt{32}  \\ 3 \sqrt{2}  =  \sqrt{ {3}^{2} \times 2 }  =  \sqrt{9 \times 2}  =  \sqrt{18}  \\ 6 =  \sqrt{ {6}^{2} }  =  \sqrt{36}  \\  \sqrt{18} . \sqrt{20} . \sqrt{32} . \sqrt{36}

3) \sqrt{216}  =  \sqrt{ {6}^{3} }  =  \sqrt{ {6}^{2} \times 6 }  =  \sqrt{ {6}^{2} }  \times  \sqrt{6}  = 6 \sqrt{6}  \\  \sqrt{ {3}^{5}  \times  {2}^{7} }  =  \sqrt{ {3}^{5} }  \times  \sqrt{ {2}^{7} }  =  \sqrt{ {3}^{4 + 1} }  \times  \sqrt{ {2}^{6 + 1} }  =  \sqrt{ {3}^{4} \times 3 }  \times  \sqrt{ {2}^{6}  \times 2}  =  \sqrt{ {3}^{4} }  \times  \sqrt{3}  \times  \sqrt{ {2}^{6} }  \times  \sqrt{2}  =  \sqrt{( {3}^{2}) ^{2}  } \times  \sqrt{3}   \times  \sqrt{( {2}^{3}) ^{2}  }   \times  \sqrt{2} =  {3}^{2}  \times  \sqrt{3}  \times  {2}^{3}  \times  \sqrt{2}  = 9 \sqrt{3}  \times 8 \sqrt{2}  = 72 \sqrt{6}

 \sqrt{80}  =  \sqrt{16 \times 5}  =  \sqrt{16}  \times  \sqrt{5}  = 4 \sqrt{5}  \\  \sqrt{800}  =  \sqrt{8 \times 100}  =  \sqrt{8}  \times  \sqrt{100}  =  \sqrt{4 \times 2}  \times 10 =  \sqrt{4}  \times  \sqrt{2}  \times 10 = 2 \sqrt{2}  \times 10 = 20 \sqrt{2}

4)2 \sqrt{2}  - ( + 2) - ( - 2 \sqrt{2} ) + ( - 5) = 2 \sqrt{2}  - 2 + 2 \sqrt{2}  - 5 = 4 \sqrt{2}  - 7

 \sqrt{ {2}^{3} }  +  \sqrt{ {2}^{5} }  +  \sqrt{ {2}^{7} }  =  \sqrt{ {2}^{2}  \times 2}  +  \sqrt{ {2}^{4} \times 2 }  +  \sqrt{ {2}^{6} \times 2 }  = 2 \sqrt{2}  +  \sqrt{16}  \times  \sqrt{2}  +  \sqrt{64}  \times  \sqrt{2}  = 2 \sqrt{2}  + 4 \sqrt{2}  + 8 \sqrt{2}  = 14 \sqrt{2}

(3 \sqrt{5} ) \times ( - 2 \sqrt{5}) =  - 6 \sqrt{25}   =  - 6 \times 5 =  - 30

 - 40 \sqrt{6}  \div 5 \sqrt{3}  =  - 8 \sqrt{2}

 {( - 3 \sqrt{2} })^{2}  =  - 3 \sqrt{2}  \times ( - 3 \sqrt{2} ) = 9 \sqrt{4}  = 9 \times 2 = 18

 \sqrt{3} ( \sqrt{2}  +  \sqrt{6} ) =  \sqrt{3}  \times  \sqrt{2}  +  \sqrt{3}   \times   \sqrt{6}  =  \sqrt{6}  +  \sqrt{18}  =  \sqrt{6}  +  \sqrt{9 \times 2}  =  \sqrt{6}  + 3 \sqrt{2}

 \sqrt{14}  \div  \sqrt{2}  - 3 \sqrt{7}  =  \sqrt{7}  - 3 \sqrt{7}  =  - 2 \sqrt{7}

5) \frac{2}{ \sqrt{5} }  =  \frac{2 \sqrt{5} }{ \sqrt{5} \times  \sqrt{5}  }  =  \frac{2 \sqrt{5} }{5}

 \frac{2 \sqrt{3} }{ \sqrt{5} }  =  \frac{2 \sqrt{15} }{5}

a = 3 \sqrt{2}  + 1 \\ b = 3 \sqrt{2}  - 1 \\ ma =  \frac{3 \sqrt{2} + 1 + 3 \sqrt{2}  - 1 }{2}  =  \frac{6 \sqrt{2} }{2}  = 3 \sqrt{2}

Alte întrebări interesante