Numarul natural a are n cifre, iar a la puterea a 5-ea are m cifre.Stiind ca m+n=2019, care este valoarea lui m-n?
Răspunsuri la întrebare
Răspuns de
5
Răspuns:
1345
Rezolvare:
Dacă a are n cifre, atunci a la puterea a 5-a are cel mult 5·n cifre.
⇒ m = 5n - ?
m+n = 2019 ⇒ 5n - ? + n = 2019 ⇒ 6n - ? = 2019
2019:6 = 336 rest 3
2019 nu se imparte exact la 6, primul număr care se împarte exact la 6 după 2019 este 2019+3 = 2022.
⇒ 6n - 3 = 2019 ⇒ 6n = 2022 ⇒ n = 2022/6 ⇒ n = 337
Dar m = 5n - 3:
⇒ m - n = 5n - 3 - n = 4n - 3 = 1345
Alte întrebări interesante
Matematică,
8 ani în urmă
Engleza,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă