Numerele √3 si 3 sunt termeni ai unei progresii aritmetice cu ratia r. Aratati ca r este număr irational.
Răspunsuri la întrebare
Răspuns de
0
Răspuns:
asa este!!!
Explicație pas cu pas:
3=√3+n*r, unde n∈N si r este ratia progresiei aritmetice
presupunem prin absurd ca r∈Q
atunci r*n∈Q si √3+n*r,∈R\Q
dar √3+n*r=3∈N⊂Q
nu se poate ca un nr sa apartina simultan si lui R\Q si lui Q; deci contradictie, deci presupunerea noastra a fost falsa
deci este adevarat contraraei, ca r∈R\Q
Extra
..o facusem pt geomerica, asa ca o las
3 =√3*r^p unde r este ratia si p∈N⊂Q
presupunem prin absurd ca r∈Q⇒r^p∈Q⇒√3*r^p∈R\Q
dar √3*r^p=3∈N⊂Q
nu se poate ca un nr sa apartina simulta n si lui R\Q si lui Q; deci contradictie, deci presupunerea noastra a fost falsa
deci este adevarat contraraei, ca r∈R\Q
Alte întrebări interesante
Engleza,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă