Matematică, întrebare adresată de mika78, 8 ani în urmă

Numerele a și b sunt direct proporționale cu 10 și 11 și 2-a plus 3b egal cu 139 Aflați produsul numerelor a și b​

Răspunsuri la întrebare

Răspuns de Utilizator anonim
1

\frac{a}{10} =\frac{b}{11} =k (relatia de proportionalitate)

=> a=10 k\\=> b= 11k

2-a+3b=139/-2\\3b-a=137\\inlocuim pe a si b

3*11k-10k=137\\33k-10k=137\\23k=137\\k=\frac{137}{23}

=> \frac{a}{10} =\frac{b}{11} =\frac{137}{23} \\=> a=\frac{137*10}{23} =\frac{1370}{23} \\=> b=\frac{137*11}{23} =\frac{1507}{23}

Produsul: \frac{1370}{23} *\frac{1507}{23} =\frac{2064590}{529}

Alte întrebări interesante