Numerele naturale ab si bc cu bara deasupra, sunt scrise in baza 10 si sunt direct proportionale cu numerele 5 si respectiv 3.
a) aratati ca b=5
b)determinati toate nr ab si bc cu bara deasupra care indeplinesc conditia din enunt
Răspunsuri la întrebare
Răspuns de
103
(10a+b)/5 = (10b+c) / 3 ⇒ 30a+3b = 50b+5c c= (30a-47b) / 5 ⇒ deoarece c∈N ⇒5 divide (30a-47b) ⇒ ptr. ca 5 divide 30a, trebuie ca si 5 sa divida 47·b , iar pentru aceasta b=5
I. 30a - 235 =5 ⇒ 30a = 240 a=8 c=1 ab=85 bc=51 (85/51 =5·17/3·17) II. 30a -235 =10 ⇒ 30a=245 a∉N
III. 30a - 235 =15 30a =250 a∉N IV.30a-235=25 30a = 260 a∉N V. 30a - 235 = 35 30a = 270 a=9 c=7 ab=95 bc =57
Alte întrebări interesante