Matematică, întrebare adresată de adelinatheodora1, 8 ani în urmă

Pe cercul de centru O şi rază R se consideră punctele A, B și C, astfel încât unghiul AOB
=120° şi Unghiul BOC=100°. Determinați măsurile unghiurilor triunghiului ABC.

Răspunsuri la întrebare

Răspuns de marinalemandroi
4

Răspuns:

Explicație pas cu pas:

ΔAOB isoscel ⇒ m(∡BAO)=30°=m(∡ABO)

ΔBOC isoscel⇒ m(∡OBC)=m(∡OCB)=40°

ΔAOC isoscel⇒ m(∡ACO)=m(∡OAC)=20°

⇒m(∡A)=30+20=50°

m(∡B)=30+40=70°

m(∡C)=40+20=60°

Răspuns de idora
4

Fixăm cele trei puncte pe cerc, în sens trigonometric.

\bf \widehat{AOB}=120^o \Rightarrow \stackrel\frown{AB}=120^o\\ \\ \widehat{BOC}=100^o \Rightarrow \stackrel\frown{BC}=100^o\\ \\\stackrel\frown{CA}=360^o-(120^o+100^o)=140^o\\ \\ \\ \widehat{CAB}=\dfrac{\stackrel\frown{BC}}{2}=\dfrac{100^o}{2}=50^o\\ \\ \\ \widehat{ABC}=\dfrac{\stackrel\frown{CA}}{2}=\dfrac{140^o}{2}=70^o\\ \\ \\ \widehat{BCA}=\dfrac{\stackrel\frown{AB}}{2}=\dfrac{120^o}{2}=60^o

Alte întrebări interesante