Piramida patrulateră regulată VABCD are inaltimea VO = 6 radical din 2 cm și muchia laterala VA=12cm.
1.Fie T un punct situat pe segmentul DC, astfel încât VT + TM să aibă lungimea minima. Calculati lungimea segmentului TC.
AJUTOR!!! 15 pc și coroana la răspunsul complet
Răspunsuri la întrebare
Răspuns de
5
În triunghiul drVOA aplicăm Pitagora: OA^2=VA^2-VO^2, OA=rad 144-62=rad82 Deci diag AC=2rad82 iar latura pătratului de la bază va fi AB=rad82.
VT minim rezultă că VTperpend pe DC, este apotema piramidei. VT^2=144-82/4= 576/4-82/4= 494/4 Deci VT=rad494/2
TM minimă rezultă TM perpend pe DO în M. Aflăm TM scriind în 2 moduri aria triunghiului dr DOT: OT•DT/2=TM•DO/2
82/4=TM•rad82/2
De unde TM= rad82/2
Așadar suma cerută va fi VT+TM=rad494/2+rad82/2
VT minim rezultă că VTperpend pe DC, este apotema piramidei. VT^2=144-82/4= 576/4-82/4= 494/4 Deci VT=rad494/2
TM minimă rezultă TM perpend pe DO în M. Aflăm TM scriind în 2 moduri aria triunghiului dr DOT: OT•DT/2=TM•DO/2
82/4=TM•rad82/2
De unde TM= rad82/2
Așadar suma cerută va fi VT+TM=rad494/2+rad82/2
anonimul6042:
Nu este corect
Alte întrebări interesante
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
9 ani în urmă