Matematică, întrebare adresată de bogdanamariute, 9 ani în urmă

Problema 1c , va rog frumos !

Anexe:

Răspunsuri la întrebare

Răspuns de albatran
3
exercitiul e frumos, dar este mult mai avantajos sa il rezolvi pe tot, in ordinea care este dat
de fapt este un mersde calcul sugerat de catre autorul exerciţiului
cum ar fi determinara m,atricei A^ (-1) , nu clasic , ci din o ecuatie matriceala, cea data la punctul A
Anexe:

albatran: cu placere
albatran: pana corectez, mukltumita observatiei Atsuko, la X, a11 este 3 , asa cum rezulta din calcul (corect )))) , si nu -3
albatran: si verificare a iesit pt am inmultit pe X cu A si nu pe A cu X, ca in cerinta
albatran: am corectat
Răspuns de Utilizator anonim
1
\displaystyle \mathtt{1.~c)~A=  \left(\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right);~B=\left(\begin{array}{ccc}\mathtt{7}&\mathtt{6}\\\mathtt{-6}&\mathtt{-5}\end{array}\right);~AX=B}\\ \\ \mathtt{AX=B \Rightarrow X=A^{-1}B}

\displaystyle \mathtt{A^{-1}= \frac{1}{det(A)} \cdot A^*}\\ \\ \mathtt{det(A)=\left|\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right|=5 \cdot (-3)-4 \cdot (-4)=-15+16=1}\\ \\ \mathtt{det(A)=1}\\ \\ \mathtt{A=\left(\begin{array}{ccc}\mathtt{5}&\mathtt{4}\\\mathtt{-4}&\mathtt{-3}\end{array}\right)\Rightarrow A^T=\left(\begin{array}{ccc}\mathtt{5}&\mathtt{-4}\\\mathtt{4}&\mathtt{-3}\end{array}\right)}

\displaystyle \mathtt{D_{11}=(-1)^{1+1}\cdot (-3)=1\cdot (-3)=-3}\\ \\ \mathtt{D_{12}=(-1)^{1+2}\cdot 4=(-1) \cdot 4=-4}\\ \\ \mathtt{D_{21}=(-1)^{2+1}\cdot (-4)=(-1)\cdot (-4)=4}\\ \\ \mathtt{D_{22}=(-1)^{2+2}\cdot 5=1 \cdot 5=5}\\\\\mathtt{A^*=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)}

\displaystyle \mathtt{A^{-1}= \frac{1}{1}\cdot \left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)= \left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)} \\ \\ \mathtt{A^{-1}=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right)}

\displaystyle \mathtt{A^{-1}B=\left(\begin{array}{ccc}\mathtt{-3}&\mathtt{-4}\\\mathtt{4}&\mathtt{5}\end{array}\right) \cdot\left(\begin{array}{ccc}\mathtt{7}&\mathtt{6}\\\mathtt{-6}&\mathtt{-5}\end{array}\right)=}

\displaystyle \mathtt{=\left(\begin{array}{ccc}\mathtt{-3\cdot7+(-4) \cdot (-6)}&\mathtt{-3\cdot 6+(-4) \cdot (-5)}\\\mathtt{4 \cdot 7+5 \cdot (-6)}&\mathtt{4 \cdot 6+5 \cdot (-5)}\end{array}\right)=}\\ \\ \mathtt{=  \left(\begin{array}{ccc}\mathtt{-21+24}&\mathtt{-18+20}\\\mathtt{28-30}&\mathtt{24-25}\end{array}\right)=  \left(\begin{array}{ccc}\mathtt{3}&\mathtt2\\\mathtt{-2}&\mathtt{-1}\end{array}\right)} 

\displaystyle \mathtt{X= \left(\begin{array}{ccc}\mathtt{3}&\mathtt2\\\mathtt{-2}&\mathtt{-1}\end{array}\right)}

albatran: da, atsuko, mersi ; am gresitceva ; corectez..si nu m-am prins ptc ca la verificare am facut A*X in loc de X*A si imi iesise..inca o dovada ca inmultirea matricilor nu e comutativa
Alte întrebări interesante