Matematică, întrebare adresată de Denisa040, 9 ani în urmă

Problema celor 49 de gândaci. În fiecare pătrățel al unei table 7x7 se găsește un gândac. La un anumit moment toți gândacii zboară și apoi fiecare se așează într-un pătrățel vecin după o latură cu cel de pe care a zburat. Arătați că într-un anumit pătrățel nu se va găsi niciun gândac.  Mulțumesc :) 

Răspunsuri la întrebare

Răspuns de Utilizator anonim
89
Prima data as gandi intr-un mod babesc asa:
sirul de margine are 6*4 patratele si fiecare gandac poete sa sara in patratica din dreapta (de ex) .
randul 2 (vezi in imagine cel verde) are 4*4 =16 patratele, si fiecare gandac poate sa sara in patratelul de langa;
Randul 3 are 8 patratele, si iar fiecare gandac poate sa sara in patratul de langa
Dar, ramane un patratel in mijloc, unde lucrurile nu stau deloc bine...

Deci, rationam logic asa :
daca fiecare gandac zboara dintr-o casuta in alta trebuie sa avem cel putin
k*2 casute (k = gandaci/2) adica un numar par de casute ;
Dar numarul casutelor careului nostru este 7x7=49 =un numar impar de casute.
Asta inseamna ca intr-un patratel (al 49-lea) nu se va gasi nici un gandac.
Anexe:
Alte întrebări interesante