Matematică, întrebare adresată de razvanalexandr, 9 ani în urmă

Problema politehnica

Ma puteți ajuta la problema numărul 593 căci nu am făcut deloc aceste tipuri de probleme la școală

Anexe:

Răspunsuri la întrebare

Răspuns de Lennox
3
arcsin(sinx)=x
∫arcsin(sinx)dx=∫xdx=x²/o↑π=π²-0=π²

razvanalexandr: Asta e ideea: nu am învățat ca arcsin (sinx)=x...Cum se numește aceea lecție ?
Rayzen: arcsin(sinx) = x este o identitate.
Rayzen: Cu orice ai inlocui x, acel arcsin(sinx) va fi tot x.
GreenEyes71: Lennox, din păcate soluția nu este corectă. Între π/2 și π (cadranul II), avem că sinx = sin(π -- x), deci arcsin(sinx) = π -- x. Integrala trebuie deci împărțită în suma a 2 integrale, de la 0 la π/2 (în acest interval expresia de sub integrală este egală cu x), iar a doua integrală este de la π/2 la π, în acest interval, expresia de sub integrală este π -- x. Rezultatul corect este π²/4.
Rayzen: Asa este! Si pe calculator rezultatul este tot π²/4. Calculatorul nu minte niciodata.
GreenEyes71: Funcția inversă arcsin nu ia valori decât în intervalul --π/2, π/2, așa este ea definită. Dacă nu ar fi așa, funcția nu ar mai fi bijectivă, deci nu ar mai fi inversabilă. Cu alte cuvinte arcsin(π), de exemplu, nu poate fi egal cu π, pentru că am ieși în afara codomeniului funcției arcsin, adică --π/2, π/2.
Rayzen: Corect !
GreenEyes71: Printre variantele de răspuns se află în mod intenționat și rezultatul π²/2, tocmai pentru a-i prinde pe cei care cad în această capcană.
GreenEyes71: Soluția este și din alt punct de vedere greșită, pentru că între 0 și π integrala ∫xdx nu poate fi egală cu π², ci este egală cu π²/2.
Alte întrebări interesante