Matematică, întrebare adresată de razvanalexandr, 9 ani în urmă

Problema

Salut, la problema numarul 23 mie mi-a dat raspunsul E(mai precis, 4 radacini rationale: -1,1,-2,2).Corect ?

Anexe:

albatran: vezi ca ai avut un raspuns gresit care "confirma" greseala ta; ati facut amandoi o confuzie intre posibilitatea ca unele numere sa fie radacini ratuionale si realitatea care rezulta in urma verificarii; un polinom de grad n cu coeficienti reali are exact n radacini; intre acestea , eventual , un numar par de radacini complexe nereale;deci un polinomde gard 3 are exact3 radacini; dintre care 1 sau 3 , reale

Răspunsuri la întrebare

Răspuns de albatran
0
x³+2x+2=0 ,  are o  radacina reala si numai una (functia e strict crescatoare ca suma de 2 functii strict crescatoare, deci a va lua valoarea 0  singura data),
deci are una rationala, dac acea radicina reala e si rationala
sau exclusiv
 nici una rationala , daca acea radacina reala nu este rationala
se stie ca daca un polinom admite o radacina rationala, de forma p/q , ireductibila p.q∈Z, atunci p|an si q|a0, unde a0 este coeficientul  termenului domionant (primul termen) si an , termenul liber
deci in cazul nostru radacini rationale , dac exista ,pot fi doar de forma

 divizorii lui 2/divizorii lui 1,

 adica +-1 si +-2
a ar trbui sa ii verificam pe toti 4
 DAR
cum f(0)=2 >0 , si functia este crescatoare nu are sens sa verificam decat pt x=-2 si x=-1
f(-2)=-8-4+2=-10≠0
 f(-1)=-1-2+2=-1≠0
deci polinomul nu are NICI o radacina rationala, deci  raspuns corect A, 0 (ZERO ) radacini


Obs 1.cum f(-1)=-1<0 so f(0)=2>0 si functia este strict crescatoare⇒f(x) are o radacina reala irational, cuprinsa in intervalul (-1;0)


OBs  c m importanta.
ca sa verifici daca un numar este radacina a uni polinom dau i pur si  simplu valoarea aceea lui x si vezi daca f(x)=0
tu ai spus  aceste radacini ar fi -1;1;2;-2
f(-2)=-10  si f(-1)=-1 le-am calculat mai sus, deci NU sunt
 iata si f(1)=1+2+2=5≠0
 si
f(2)=8+4+2=14≠0
deci nici acestera NU sunt

Obs 3 daora cum reziolvand, inteleg greseala  ta. Cred ca tu ai confundat cele 4(patru) POSIBILITATI (verificari ce trebuiesc efectuate) cu numarul EFECTIV  de radacini rationale, 0.

razvanalexandr: merci mult de tot, ma descurc la integrale si limite f.bine dar la astea mereu ma incurc, nu-mi place deloc algebra.
razvanalexandr: Iar numarul radacinilor reale este tot de 0 ?
Alte întrebări interesante