Matematică, întrebare adresată de an0nimaaaa, 8 ani în urmă

produsul a doua numere este 30 si suma lor este -11 . determinat nr

Răspunsuri la întrebare

Răspuns de 102533
6

Răspuns:

Explicație pas cu pas:

a · b = 30

a + b = -11 => a = -b-11

b·(-b-11) = 30 =>

-b²-11b -30 = 0

b²+11b+30 = 0

Δ = 11²-4·1·30 = 121-120 = 1

√Δ = 1

b₁,₂ = (-11±1)/2 = >

b₁ = -12/2 = -6 => a₁ = 6-11 = -5

b₂ = -10/2 = -5 => a₂ = 5-11 = -6

Solutii : {a = -5 ; b = -6

            {a = -6 ; b = -5


vacarasgheorghe: nu
Răspuns de HawkEyed
8

Răspuns:

a = -5, b = -6

a = -6, b = -5

Explicație pas cu pas:

a × b = 30

a + b = - 11

a = 30/b

30/b + b = -11   /×b

30 + b² = - 11b

b² + 11b + 30 = 0

a = 1

b = 11

c = 30

Δ = b² - 4ac = 11² - 4×1×30 = 121 - 120 = 1

b₁ = ( - b + √Δ) / 2a = (-11 + 1)/2 = -10/2 = -5

b₂ = ( - b - √Δ) / 2a = (-11 - 1)/2 = -12/2 = -6

daca b = -5, atunci a = 30/-5 = - 6

daca b = -6, atunci a = 30/-6 = -5


vacarasgheorghe: nu
Alte întrebări interesante