raspuns pentru problema dată
Răspunsuri la întrebare
S1 = 1+3+5+...+2019 = (1 + 2019) * n / 2
n = (2019 - 1) / 2 + 1 = 2018 /2 + 1 = 1009 + 1 = 1010
S1 = 2020 * 1010 / 2 = 1010^2
S2 = 1+3+5+...+1009 = (1 + 1009) m / 2
m = (1009 - 1) / 2 + 1 = 1008 / 2 + 1 = 504 + 1 = 505
S2 = 1010 * 505 / 2 = 505^2
a = rad(S1 / S2) = rad(1010^2 / 505^2) = 1010 / 505 = 2
a=2 este numarul natural cautat
Răspuns:
Explicație pas cu pas:
1 + 3 + 5 + ..... + 2019
a1 = 1; an = 2019; r = 2
an = a1 + (n - 1)r
2019 = 1 + (n - 1)*2 = 1 + 2n - 2 = 2n - 1
2n = 2019 + 1 = 2020
n = 2020 : 2 = 1010
Sn = n(a1 + an)/2 = 1010 (1 + 2019)/2 = 1010*2020/2 = 1010*1010
_______________________
1 + 3 + 5 + ..... + 1009
a1 = 1; an = 1009; r = 2
an = a1 + (n - 1)r
1009 = 1 + (n - 1)*2 = 1 + 2n - 2 = 2n - 1
2n = 1009 + 1 = 1010
n = 1010 : 2 = 505
Sn = n(a1 + an)/2 = 505 (1 + 1009)/2 = 505*1010/2 = 505*505
________________________
1010*1010/505*505 = 4
a = √4 = 2, numar natural