Matematică, întrebare adresată de VeleaSimona76, 9 ani în urmă

Rezolvati :

a. (x+2)(x+3)
b. (x-2)(x-3)
c. (6x-1)(3x-3)
d. (x²+2)(x-5)
e.(6x²-1)(2x-2)
f. (x-3)(x²+3x+9)

Mi am dat toate punctele. Repede pls

Răspunsuri la întrebare

Răspuns de Utilizator anonim
1
a)(x + 2)(x + 3)

 = {x}^{2} + 3x + 2x + 6

 = {x}^{2} + 5x + 6

 {x}^{2} + 5x + 6=0

a=1;b=5;c=6

/Delta={b}^{2}-4\times a\times c

\Delta={5}^{2}-4\times1\times6

\Delta=25-24

\Delta=1

x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2\times a}

x_{1,2}=\frac{-5\pm\sqrt{1}}{2\times 1}

x_{1,2}=\frac{-5\pm1}{2}

x_{1}=\frac{-5+1}{2}=-\frac{4}{2}=-2

x_{2}=\frac{-5-1}{2}=-\frac{6}{2}=-3

b)(x - 2)(x - 3)

 = {x}^{2} - 3x - 2x + 6

 = {x}^{2} - 5x + 6

c)(6x - 1)(3x - 3)

 = {18x}^{2} - 18x - 3x + 3

 = {18x}^{2} - 21x + 3

a=18;b=-21;c=3

\Delta={b}^{2}-4\times a\times c

\Delta={(-21)}^{2}-4\times18\times3

\Delta=441-216

\Delta=225

x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2\times a}

x_{1,2}=\frac{-(-21)\pm\sqrt{225}}{2\times 18}

x_{1,2}=\frac{21\pm15}{36}

x_{1}=\frac{21+15}{36}

x_{1}=\frac{36}{36}

x_{1}=1

x_{2}=\frac{21-15}{36}

x_{2}=\frac{6}{36}

x_{2}=\frac{1}{6}

d)( {x}^{2} + 2)(x - 5)

 = {x}^{3} - 5 {x}^{2} + 2x- 10

D_{10}=\pm1,\pm2,\pm5,\pm10

=>x=5

{x}^{2}+2=0

{x}^{2}=-2

x=/pm\:sqrt{-2}

=>ecuatia\: nu\: are\: radacini \:reale


e)(6 {x}^{2} - 1)(2x - 2)

 = 12 {x}^{3} - 12 {x}^{2} - 2x + 2

12{x}^{3}-12{x}^{2}-2x+2=0

D_{2}=\pm1,\pm2

=>x_{1}=1

12{x}^{2}-2=0

12{x}^{2}=2

{x}^{2}=\frac{2}{12}

{x}^{2}=\frac{1}{6}

x=\sqrt{\frac{1}{6}}

x=\pm\frac{\sqrt{6}}{6}

x_{1}=\frac{\sqrt{6}}{6}

x_{2}=-\frac{\sqrt{6}}{6}

f)(x - 3)( {x}^{2} + 3x + 9)

 = {x}^{3} + 3 {x}^{2} + 9x - 3 {x}^{2} - 9x - 27

 = {x}^{3} - 27

{x}^{3}-27=0

{x}^{3}=27

{x}^{3}={3}^{3}

=>x=3
Răspuns de Chris02Junior
0
a. x^2 + 5x+6
b. x^2 -5x  + 6
c. 18x^2 -21x +3
d. x^3 -5x^2 +2x -10
e. 12x^3 -12x^2 -2x + 2
f. x^3 +3x^2 +9x -3x^2 -9x -27 = x^3 -27
Alte întrebări interesante