Matematică, întrebare adresată de anamaria2120, 8 ani în urmă

Rezolvați în mulțimea nr reale ecuația: radical din x-1= radical din x^2-2x-1



Răspunsuri la întrebare

Răspuns de vergiliu2004
1

\sqrt{x - 1} = \sqrt{x^{2} -2x - 1} \implies x- 1 \geq 0 \text{ , } x^{2} -2x - 1 \geq 0

\text{Din prima inegalitate avem: $x \in [1, \infty)$, iar din a doua $x \in (-\infty, 1 - \sqrt{2}]\cup[1 + \sqrt{2}, \infty)$}\text{Combinand intervalele obtinem ca $x \in [1 + \sqrt{2}, \infty)$}

Acum putem ridica ambele părți la puterea a 2-a:

x-1 = x^{2} -2x - 1 \implies x^{2} -3x = 0 \implies x_{1} = 0, x_{2} = 3

\text{$x_{1} = 0$ nu e solutie deoarece nu se gaseste in intervalul $[1+\sqrt{2}, \infty)$}\\\text{Deci unica solutie este $\boxed{x = 3}$}}

S = \{3\}


anamaria2120: Mulțumesc frumos!!!!
Alte întrebări interesante