Rezolvati in multimea numerelor reale prin metoda substitutiei sistemul de ecuatii: a) x-y=2 | 2x-3y=2,,, b) 3x-y=-4|x+2y=8,,, c) x+y=6| 3x-5y=2,,, d) 2y-x=-3| 3y-2x=-7
Răspunsuri la întrebare
Răspuns
a) x = 4 ; y = 2 ; b) x = 0 ; y = 4 ; c) x = 4 ; y = 2 ; d) x = 5 ; y = 1 ;
Explicație pas cu pas:
a) x-y =2 ; x = 2+y ;
2x-3y = 2 ; inlocuim pe x din prima ecuatie in cea de-a doua
2(2+y)-3y = 2 ; 4+2y-3y = 2 ; y = 4-2 = 2 ; x = 2+y = 2+2 = 4 ;
b) 3x-y = -4 ;
x+2y = 8 ; x = 8-2y ; inlocuim pe x in prima ecuatie
3(8-2y)-y = -4 ; 24-6y-y = -4 ; 7y = 24+4 = 28 ; y = 28:7 = 4 ; x = 8-2y = 8-8 = 0
c) x+y = 6 ; y = 6-x ; inlocuim y in a doua ecuatie ;
3x-5y = 2 ; 3x-5(6-x) = 2 ; 3x-30+5x = 2 ; 8x = 32 ; x = 4 ; y 6-4 = 2
d) 2y-x = -3 ; x = 2y+3 ; inlocuim x in a doua ecuatie
3y-2x = -7 ; 3y-2(2y+3) = -7 ; 3y-4y-6 = -7 ; y = 7-6 = 1 ; x = 2*1+3 = 5 ;
Răspuns
Explicație pas cu pas: Metoda substitutiei
a)
{ x - y = 2 ⇒ x = y + 2
{ 2 x - 3 y = 2
___________
2 x - 3 y = 2 → il inlocuiesc pe x cu( y + 2 )
2 ( y + 2 ) - 3 y = 2
2 y + 4 - 3 y = 2
- y = 2 - 4
- y = - 2 l : ( - )
y = 2
x = y + 2 ⇒ x = 2 + 2 ⇒ x = 4
___________________________
b)
{ 3 x - y = - 4
{ x + 2 y = 8 ⇒ x = 8 - 2 y
_______________________
3 x - y = - 4
3 × ( 8 - 2y ) - y = - 4
24 - 6 y - y = - 4
- 7 y = - 4 - 24
- 7 y = - 28 l : ( - 7 )
y = 4
x = 8 - 2 × 4 ⇒ x = 0
______________________
c)
{ x + y = 6 ⇒ x = 6 - y
{ 3 x - 5 y = 2
_____________
3 x - 5 y = 2
3 ( 6 - y ) - 5 y = 2
18 - 3 y - 5 y = 2
- 8 y = 2 - 18
- 8 y = - 16 l : ( - 8 )
y = 2
x = 6 - y ⇒ x = 6 - 2 ⇒ x = 4
________________________________
d)
{ 2 y - x = - 3 ⇒ x = 2 y + 3
{ 3 y - 2 x = - 7
_______________
3 y - 2 x = - 7
3 y - 2 ( 2 y + 3 ) = - 7
3 y - 4 y - 6 = - 7
- y = - 7 + 6
- y = - 1 l : ( - )
y = 1
x = 2 × 1 + 3 ⇒ x = 5