Matematică, întrebare adresată de gratieilinca, 9 ani în urmă

Rezolvați :

u (2017 la puterea 2017)
u (2018 la puterea 2018)
u (2019 la puterea 2019)
u (2020 la puterea 2020)

DAU COROANA

Răspunsuri la întrebare

Răspuns de rapunzel15
7
u (2017 la puterea 2017) = U(7^2017) = U(7^1) = 7

u (2018 la puterea 2018) = U(8^2018) = U(8^2) = U(64) = 4


u (2019 la puterea 2019) = U(9^2019) = 9

u (2020 la puterea 2020) = 0
________________________

cateva explicatii ptr fiecare in parte :

----- 2017 = 4 × 504 + 1

----- 2018 = 4 × 504 + 2

----- 9 la o putere para are ultima cifra 1

----- 9 la o putere impara (2019) are ultima cifra 9

----- un numar care se termina in 0, la orice putere va avea ultima cifra 0 .
Alte întrebări interesante