S=1+3+5...2013+2015 este patrat perfect
Răspunsuri la întrebare
Răspuns de
2
Se folosește formula:
Deci 2n-1=2013⇒n=1007, de unde suma de calculat este egala cu 1007².
Altfel:
!+3+5+...+2013=1+2+3+4+5+...+2014-(2+4+...+2014)=
=2014·2015/2-2(1+2+3+...+1007)=
=1007·2015-2·1007·1008/2=
=1007·(2015-1008)=1007·1007=1007²
Deci 2n-1=2013⇒n=1007, de unde suma de calculat este egala cu 1007².
Altfel:
!+3+5+...+2013=1+2+3+4+5+...+2014-(2+4+...+2014)=
=2014·2015/2-2(1+2+3+...+1007)=
=1007·2015-2·1007·1008/2=
=1007·(2015-1008)=1007·1007=1007²
Alte întrebări interesante
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
10 ani în urmă
Limba română,
10 ani în urmă
Limba română,
10 ani în urmă
Limba română,
10 ani în urmă
Matematică,
10 ani în urmă