Matematică, întrebare adresată de popestera, 8 ani în urmă

Să se afle trei numere naturale ştiind că primul este 3/5 din al doilea, al doilea este 4/5 din al
treilea, iar produsul dintre primul şi ultimul este 4800.

Vă rog să mă ajutați! Mulțumesc!

Răspunsuri la întrebare

Răspuns de needhelp112
3

Notam numerele cu a, b si c.

a = b × 3/5

b = c × 4/5

Atunci a = (c × 4/5) × 3/5 = c × 12/25

Dar a × c = 4800, adica:

c × 12/25 × c = 4800

c^2 × 12/25 = 4800

c^2 = 4800 : (12/25) = 4800 × 25/12 = 400 × 25 =2^4 × 5^2 × 5^2 =2^4 × 5^4

Atunci c = radical (2^4 × 5^4) = 2^2 × 5^2 = 4 × 25

c = 100

b = c × 4/5 = 100 × 4/5 = 20 × 4/1 = 80

a = B × 3/5 = 80 × 3/5 = 16 × 3/1 = 48

R: Numerele sunt 48, 80 si 100

Alte întrebări interesante