Matematică, întrebare adresată de marilog68, 9 ani în urmă

sa se arate ca 2(1+3+3la puterea 2+...+3la puterea8)<3 la puterea9

Răspunsuri la întrebare

Răspuns de AladinC
1
S = 2·(1+3+....+ 3^{8} ) = 2+2·3+2· 3^{2} +...+ 3^{8} < 1+(2+2·3+2· 3^{2} +...+2· 3^{8} )=3+2·3+2· 3^{2} +...+2· 3^{8} (am adunat 1in fata)
Grapand termenii cate 2 se observa ca 3+2·3=3²
3²+2·3²=3³
.......samd
3 3^{n} +2· 3^{n} = 3^{n+1}
Adica S<3+2·3+2· 3^{2} +...+2· 3^{8} = 3^{9}



Alte întrebări interesante