Matematică, întrebare adresată de Aaren, 8 ani în urmă

Să se calculeze sumele:

Anexe:

Răspunsuri la întrebare

Răspuns de Rayzen
8

Răspuns:

\displaystyle -\frac{7}{6}\sqrt[4]{\frac{1}{2}}

Rezolvare:

\displaystyle  2\sqrt[4]{\frac{1}{2}}-\sqrt[4]{\frac{81}{32}}-\sqrt[4]{\frac{625}{162}} =

\displaystyle =2\sqrt[4]{\frac{1}{2}}-\sqrt[4]{\frac{3^4}{2\cdot 16}}-\sqrt[4]{\frac{5^4}{2\cdot 81}}

\displaystyle = 2\sqrt[4]{\frac{1}{2}}-\sqrt[4]{\frac{3^4}{2\cdot 2^4}}-\sqrt[4]{\frac{5^4}{2\cdot 3^4}}

\displaystyle = 2\sqrt[4]{\frac{1}{2}}-\sqrt[4]{\frac{1}{2}\cdot \frac{3^4}{2^4}}-\sqrt[4]{\frac{1}{2}\cdot \frac{5^4}{3^4}}

\displaystyle = 2\sqrt[4]{\frac{1}{2}}-\sqrt[4]{\frac{1}{2}}\cdot \sqrt[4]{\frac{3^4}{2^4}}-\sqrt[4]{\frac{1}{2}}\cdot \sqrt[4]{\frac{5^4}{3^4}}

\displaystyle = 2\sqrt[4]{\frac{1}{2}}-\frac{3}{2}\sqrt[4]{\frac{1}{2}}-\frac{5}{3}\sqrt[4]{\frac{1}{2}}

\displaystyle = \sqrt[4]{\frac{1}{2}}\cdot \left(^{^{^{\displaystyle 6)}}}\!\!2-^{^{^{\displaystyle 3)}}}\!\!\frac{3}{2}-^{^{^{\displaystyle 2)}}}\!\!\frac{5}{3}\right)

\displaystyle = \sqrt[4]{\frac{1}{2}}\cdot \left(\frac{2\cdot 6}{6}-\frac{3\cdot 3}{6}-\frac{5\cdot 2}{6}\right)

= \displaystyle \sqrt[4]{\frac{1}{2}}\cdot \left(\frac{12-9-10}{6}\right)

\displaystyle = \sqrt[4]{\frac{1}{2}}\cdot \left(-\frac{7}{6}\right)

\displaystyle = \boxed{-\frac{7}{6}\sqrt[4]{\frac{1}{2}}}

Alte întrebări interesante