Sa se demonstreze ca pt orice nr nat n, avem:
n^3+11n este divizibil cu 6.
n^3 (n la puterea a 3 a)
Ajutorr!!
Răspunsuri la întrebare
Răspuns de
1
Salut,
n³ + 11n = n³ -- n + 12n = n(n² -- 1) + 12n = n(n -- 1)(n + 1) + 12n =
= (n -- 1)n(n + 1) + 12n.
Este evident că 12n = 6·2n este divizibil cu 2.
Apoi, produsul a 3 numere consecutive este la rândul său divizibil cu 6, pentru că este divizibil cu 2 (de exemplu (n -- 1)n) și este divizibil și cu 3, pentru că avem chiar 3 numere consecutive înmulțite.
Pentru a demonstra riguros că (n -- 1)n este divizibil cu 2 trebuie să consideri cazul 1 când n = 2k (par), unde k ∈ N și cazul 2, când n = 2l + 1 (impar), unde l ∈ N. Te las pe tine să faci această demonstrație, este chiar simplă.
Pentru a demonstra riguros că (n -- 1)n(n + 1) este divizibil cu 3 trebuie să consideri cazul 1 când n = 3m, unde m ∈ N, apoi cazul 2 când n = 3p+1, cu p ∈ N și cazul 3, când n = 3s + 1, unde s ∈ N. Te las pe tine să faci această demonstrație, este chiar simplă.
Green eyes.
n³ + 11n = n³ -- n + 12n = n(n² -- 1) + 12n = n(n -- 1)(n + 1) + 12n =
= (n -- 1)n(n + 1) + 12n.
Este evident că 12n = 6·2n este divizibil cu 2.
Apoi, produsul a 3 numere consecutive este la rândul său divizibil cu 6, pentru că este divizibil cu 2 (de exemplu (n -- 1)n) și este divizibil și cu 3, pentru că avem chiar 3 numere consecutive înmulțite.
Pentru a demonstra riguros că (n -- 1)n este divizibil cu 2 trebuie să consideri cazul 1 când n = 2k (par), unde k ∈ N și cazul 2, când n = 2l + 1 (impar), unde l ∈ N. Te las pe tine să faci această demonstrație, este chiar simplă.
Pentru a demonstra riguros că (n -- 1)n(n + 1) este divizibil cu 3 trebuie să consideri cazul 1 când n = 3m, unde m ∈ N, apoi cazul 2 când n = 3p+1, cu p ∈ N și cazul 3, când n = 3s + 1, unde s ∈ N. Te las pe tine să faci această demonstrație, este chiar simplă.
Green eyes.
martadragutza:
Suuper, multumesc!
Alte întrebări interesante
Matematică,
8 ani în urmă
Geografie,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă