Sa se demonstreze inegalitățile:
Exercițiul 12. Oricât puteți va rog
Anexe:
Răspunsuri la întrebare
Răspuns de
0
Răspuns
[(x+y+z)/3]²≤(x²+y²+z²)/3
(x²+y²+z²+2xy+2xz+2yz)/9≤(x²+y²+z²)/3
(x²+y²+z²+2xy+2xz+2yz)/9-(3x²-3y²-3z²)/9≤0
(-2x²-2y²-2z²+2xy+2xz+2yz)/9≤0
(2xy+2xz+2yz)≤(2x²+2y²+2z²)
xy+yz+xz≤x²+y²+z²
Conform inelitatii dintre media geometrica(Mg) si media aritmetica (Ma) Mg≤Ma avem
√x²y²≤(x²+y²)/2=>
2xy≤(x²+y²)
Analog vom avea
2xz≤x²+z²
2yz≤y²+z²
Adunam inegalitatile
2xy+2xz+2yz≤2x²+2y²+2z² impartim prin 2
xy+xz+yz≤x²+y²+z²
Explicație pas cu pas:
Alte întrebări interesante
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă