Sa se demonstreze relatia:
Răspunsuri la întrebare
Răspuns de
0
C2k+2^(k+1)=(2k+2)!/(k+1)!*(2k+2-k-1)!=(k+1)!*(k+2)..(2k+1)(2k+2)/(k+1)!*(k+1)!=
(k+2)*...*(2k+1)(2k+2)/(k+1)! Relatia (A
___________________
C2k^k=(2k)!/k!*(2k-k)!=k!*(k+1)(k+2)...(2k)/k!*(2k-k)!=k!*(k+1)(k+2)...(2k)!/k!*k!=
(k+1)(k+2)...(2k)!/k!
---------------------------------------------
(3k+1)/k*C2k^(k+1)=(3k+1)/k*(2k)!/(k+1)!(2k-k-1)=(3k+1)/k*(2k)!/(k+1)!*(k-1)!=
(3k+1)/k*(k+1)!*(k+2)...(2k)/(k+1)!*(k-1)!=(3k+1)/k*(k+2)...(2k)/(k-1)!=
(3k+1)/k*(k+2)...(2k)/(k-1) ! (C
Inlocuiesti valorile (A si (B in relatia data si obtii (C
(k+2)...(2k+1)(2k+2)/(k+1)!-(k+1)(k+2)...(2k)/k!=aduci la acelasi numitor
[(k+2)...(2k+1)(2k+2)-(k+1)²]/(k+1)!=(k+2)...(2k)*[(3k²+4k+1)]/(k+1)!=
(k+2)...(2k)*(k+1)(3k+1)/(k+1)!=(k+2)...(2k)*(3k+1)/k*(k-1)!=(C
(k+2)*...*(2k+1)(2k+2)/(k+1)! Relatia (A
___________________
C2k^k=(2k)!/k!*(2k-k)!=k!*(k+1)(k+2)...(2k)/k!*(2k-k)!=k!*(k+1)(k+2)...(2k)!/k!*k!=
(k+1)(k+2)...(2k)!/k!
---------------------------------------------
(3k+1)/k*C2k^(k+1)=(3k+1)/k*(2k)!/(k+1)!(2k-k-1)=(3k+1)/k*(2k)!/(k+1)!*(k-1)!=
(3k+1)/k*(k+1)!*(k+2)...(2k)/(k+1)!*(k-1)!=(3k+1)/k*(k+2)...(2k)/(k-1)!=
(3k+1)/k*(k+2)...(2k)/(k-1) ! (C
Inlocuiesti valorile (A si (B in relatia data si obtii (C
(k+2)...(2k+1)(2k+2)/(k+1)!-(k+1)(k+2)...(2k)/k!=aduci la acelasi numitor
[(k+2)...(2k+1)(2k+2)-(k+1)²]/(k+1)!=(k+2)...(2k)*[(3k²+4k+1)]/(k+1)!=
(k+2)...(2k)*(k+1)(3k+1)/(k+1)!=(k+2)...(2k)*(3k+1)/k*(k-1)!=(C
Alte întrebări interesante
Engleza,
8 ani în urmă
Engleza,
8 ani în urmă
Religie,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă