Sa se determine functia f:R-> f(x)=ax^2+bx+c, a diferit de 0, stiind ca graficul functieieste tangent axei Ox in x=-4 si contine pe A(-2, -3)
Răspunsuri la întrebare
Răspuns de
4
Daca functia este tangenta axei Ox in x = -4, inseamna ca ecuatia ax² + bx + c = 0 are o singura solutie in -4 ==> delta este 0
Δ = b² - 4ac = 0
Singura solutie: x = -b / 2a = -4 ==> b = 8a
A(-2, -3) apartine graficului ==> f(-2) = -3 ==> 4a - 2b + c = -3 ==>
c = 2b - 4a - 3
Acum, avem un sistem intre cele 3 ecuatii.
Inlocuim ultimele doua in prima:

I b = 0 ==> a = b / 8 = 0 - imposibil, deoarece functia nu mai este de gradul al doilea
|| b = -6 ==> a = - 3 / 4
c = 2b - 4a - 3 = -12 + 3 - 3 = -12
f:R -> R, f(x) = -3/4 x² -6x - 12
Δ = b² - 4ac = 0
Singura solutie: x = -b / 2a = -4 ==> b = 8a
A(-2, -3) apartine graficului ==> f(-2) = -3 ==> 4a - 2b + c = -3 ==>
c = 2b - 4a - 3
Acum, avem un sistem intre cele 3 ecuatii.
Inlocuim ultimele doua in prima:
I b = 0 ==> a = b / 8 = 0 - imposibil, deoarece functia nu mai este de gradul al doilea
|| b = -6 ==> a = - 3 / 4
c = 2b - 4a - 3 = -12 + 3 - 3 = -12
f:R -> R, f(x) = -3/4 x² -6x - 12
Alte întrebări interesante
Biologie,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Engleza,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă