Matematică, întrebare adresată de andreeaxq, 9 ani în urmă

Sa se determine functia f:R-> f(x)=ax^2+bx+c, a diferit de 0, stiind ca graficul functieieste tangent axei Ox in x=-4 si contine pe A(-2, -3)

Răspunsuri la întrebare

Răspuns de Razzvy
4
Daca functia este tangenta axei Ox in x = -4, inseamna ca ecuatia ax² + bx + c = 0 are o singura solutie in -4 ==> delta este 0

Δ = b² - 4ac = 0

Singura solutie: x = -b / 2a = -4 ==> b = 8a

A(-2, -3) apartine graficului ==> f(-2) = -3 ==> 4a - 2b + c = -3 ==>
 c = 2b - 4a - 3

Acum, avem un sistem intre cele 3 ecuatii.
Inlocuim ultimele doua in prima:
b^2-4( \frac{b}{8})(2b-4a-3)=0\\ b^2-(\frac{b}{2})(2b-4(\frac{b}{8})-3)=0\\ b^2-(\frac{b}{2})(\frac{3}{2}b-3)=0\\ b^2- \frac{3}{4}b^2+\frac{3}{2}b=0\\ \frac{1}{4}b^2+\frac{3}{2}b=0\\ b^2+6b=0\\ b(b+6)=0

I b = 0 ==> a = b / 8 = 0 - imposibil, deoarece functia nu mai este de gradul al doilea

|| b = -6 ==> a = - 3 / 4
c = 2b - 4a - 3 = -12 + 3 - 3 = -12

f:R -> R, f(x) = -3/4 x² -6x - 12


Alte întrebări interesante