Matematică, întrebare adresată de Remus, 9 ani în urmă

Sa se determine m apartine lui R astfel incat sistemul sa fie de tip Cramer si sa se rezolve in acest caz

Anexe:

Răspunsuri la întrebare

Răspuns de antimcoolp6zall
13
Ca sistemul sa fie de tip Cramer, determinantul sistemului trebuie sa fie diferit de 0. Determinantul este format din coeficientii variabilelor x,y,z. Cred ca stii sa il faci. Determinantul este :
4-m^2
Si ecuatia asta diferita de 0 => 4-m^2 diferit de 0 => 4 diferit de m^2 => m nu poate sa fie 2 sau -2. Pentru alte valori ale lui m, sistemul este de tip cramer. Pentru m=2,-2, sistemul este nedeterminat 
Alte întrebări interesante