Matematică, întrebare adresată de nodetails, 9 ani în urmă

Să se rezolve în mulţime numerelor reale ecuaţia : radical de ordin 3 din ( x^2 − x − 3 )= −1.

Răspunsuri la întrebare

Răspuns de albastruverde12
17
 \sqrt[3]{x^2-x-3}=-1 \\  \\ Ridicam~la~cub~si~obtinem:  \\  \\ x^2-x-3=-1 \\  \\ x^2-x-2=0 \\  \\ \Delta=(-1)^2-4 \cdot 1 \cdot (-2)=9 \\  \\ x_{1,2}= \frac{1 \pm \sqrt { \Delta}}{2}=   \frac{1 \pm 3}{2}  = \left \{ {{-1} \atop {2}} \right. . \\  \\ \underline{Solutie}: x \in \{-1;2\}.

*Ecuatia~x^2-x-2=0~se~putea~rezolva~mai~rapid~astfel: \\  \\ x^2-x-2=0 \Leftrightarrow (x+1)(x-2)=0 \Rightarrow x \in \{-1;2\}.
Alte întrebări interesante