Sa se rezolve sistemele simetrice cu ajutorul sumei si produsului
a) 5x²-xy+5y²=29
7x²-8xy+7y²=43
b) xy+x+y=7
xy-3(x+y)=-9
hascaionut:
a)xy=-8/33
Răspunsuri la întrebare
Răspuns de
2
a) Notam S = x+y si P = x·y. Stiind ca x² + y² = S² - 2P =>
5S² -11P = 29 /·2
7S² -22P = 43
10S² -22P = 58
7S² -22P = 43 (-) => 3S² = 15 => S² = 5 => S = +√5 sau S = -√5 =>
=> 5· 5 - 11P = 29 => 25 - 11P = 29 => 11P = -4 => P= - 4/11
Deci x + y = √5 sau x + y = -√5 si calculam x si y.
x · y = -4/11 x · y = -4/11
b) Avem: P + S = 7 /·3 3P + 3S = 21
P - 3S = -9 <=> P - 3S = -9 (+) => 4P = 12 => P =3 => S=4 =>
=> x + y = 4 x = 4-y
x · y = 3 <=> (4-y) · y = 3 => 4y - y² = 3 => y² - 4y +3 = 0
Δ = 16 - 12 = 4 => y1 = (4 + 2):2 = 3 => x1 = 1
y2 = (4 - 2):2 = 1 => x2 = 3
Deci ( x ; y ) ∈ { ( 1 ; 3 ); ( 3 ; 1 ) }
5S² -11P = 29 /·2
7S² -22P = 43
10S² -22P = 58
7S² -22P = 43 (-) => 3S² = 15 => S² = 5 => S = +√5 sau S = -√5 =>
=> 5· 5 - 11P = 29 => 25 - 11P = 29 => 11P = -4 => P= - 4/11
Deci x + y = √5 sau x + y = -√5 si calculam x si y.
x · y = -4/11 x · y = -4/11
b) Avem: P + S = 7 /·3 3P + 3S = 21
P - 3S = -9 <=> P - 3S = -9 (+) => 4P = 12 => P =3 => S=4 =>
=> x + y = 4 x = 4-y
x · y = 3 <=> (4-y) · y = 3 => 4y - y² = 3 => y² - 4y +3 = 0
Δ = 16 - 12 = 4 => y1 = (4 + 2):2 = 3 => x1 = 1
y2 = (4 - 2):2 = 1 => x2 = 3
Deci ( x ; y ) ∈ { ( 1 ; 3 ); ( 3 ; 1 ) }
Alte întrebări interesante
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Istorie,
9 ani în urmă