Matematică, întrebare adresată de danachiscari8, 8 ani în urmă

Sa se verifice dacă punctele sunt colineare
a). A(-2;1) , B(-1;2) si C (2;-1)
b). M(1;2) , N(-1;4) si P (1;2)
c). E(2;1) , F(-1;3) si Q (2;3)

Răspunsuri la întrebare

Răspuns de 19999991
0
a)A(-2,1),B(-1,2),C(2,-1)

A(x_{A},y_{A}),B(x_{B},y_{B}),C(x_{C},y_{C})

A,B,C \: coliniare \: daca \: :

\begin{vmatrix}<br /><br />x_{A}&amp; y_{A} &amp; 1\\ <br /><br />x_{B}&amp; y_{B} &amp; 1\\ <br /><br />x_{C} &amp; y_{C} &amp; 1<br /><br />\end{vmatrix} = 0

\begin{vmatrix}<br /><br />- 2&amp; 1&amp; 1\\ <br /><br />- 1&amp; 2&amp; 1\\ <br /><br />2&amp; - 1&amp; 1<br /><br />\end{vmatrix} = 0

-2 \times 2 \times 1+(-1) \times (-1) \times 1+2 \times 1 \times 1-1 \times 2 \times 2-1 \times (-1) \times (-1)-1 \times 1 \times (-1) = 0

 - 4 + 1 + 2 - 4 - 1 + 1 = 0

-5 = 0 \: (F)=&gt;A,B,C \:necoliniare

b)M(1,2),N(-1,4),P(1,2)

M(x_{M},y_{M}),N(x_{N},y_{N}),P(x_{P},y_{P})<br /><br />

M,N,P \: coliniare \: daca :

\begin{vmatrix}<br /><br />x_{M}&amp; y_{M} &amp; 1\\ <br /><br />x_{N}&amp; y_{N} &amp; 1\\ <br /><br />x_{P} &amp; y_{P} &amp; 1<br /><br />\end{vmatrix} = 0

\begin{vmatrix}<br /><br />1&amp; 2 &amp; 1\\ <br /><br />- 1&amp; 4&amp; 1\\ <br /><br />1 &amp; 2 &amp; 1<br /><br />\end{vmatrix} = 0

1 \times 4 \times 1+(-1) \times 2 \times 1+1 \times 2 \times 1-1 \times 4 \times 1-1 \times 2 \times 1-1 \times 2 \times (-1) = 0

4 - 2 + 2 - 4 - 2 + 2 = 0

0 = 0 \: (A)=&gt;M,N,P\: coliniare

c)E(2,1),F(-1,3),Q(2,3)

E(x_{E},y_{E}),F(x_{F},y_{F}),Q(x_{Q},y_{Q})

E,F,Q \: coliniare \: daca :

\begin{vmatrix}<br /><br />x_{E}&amp; y_{E} &amp; 1\\ <br /><br />x_{F}&amp; y_{F} &amp; 1\\ <br /><br />x_{Q} &amp; y_{Q} &amp; 1<br /><br />\end{vmatrix} = 0

\begin{vmatrix}<br /><br />2&amp; 1 &amp; 1\\ <br /><br />- 1&amp; 3&amp; 1\\ <br /><br />2 &amp; 3 &amp; 1<br /><br />\end{vmatrix} = 0

2 \times 3 \times 1+(-1) \times 3 \times 1+2 \times 1 \times 1-1 \times 3 \times 2-1 \times 3 \times 2-1 \times 1 \times (-1) = 0

6 - 3 + 2 - 6 - 6 + 1 = 0

 - 6 = 0 \:(F)=&gt;E,F,Q \:necoliniare
Alte întrebări interesante