Matematică, întrebare adresată de onicica2001, 8 ani în urmă

Sa spunem ca aceste vaci sunt A, B si C căci cine mai știe numele lor adevărate. Cu siguranța nu Hercule Poirot!!

Lăsate de capul lor A si B ar consuma pășunea întreaga in 45 de zile. A si C ar face la fel in 60 de zile. B si C s ar descurca in 90 de zile. Dar avem A,B si C- cat ar rezista pășunea, fără a tine cont de iarba care creste la loc?


(va rog explicati-mi si cum ati rezolvat)

Răspunsuri la întrebare

Răspuns de tcostel
3
   
A si B consuma pasunea in 45 de zile
⇒ A si B consuma zilnic 1/45 din pasune
⇒ Ecuatia:   A + B = 1/45

A si C consuma pasunea in 60 de zile
⇒ A si C consuma zilnic 1/60 din pasune
⇒ Ecuatia:   A + C = 1/60

B si C consuma pasunea in 90 de zile
⇒ B si C consuma zilnic 1/90 din pasune
⇒ Ecuatia:   B + C = 1/90

Scriem sistemul de ecuatii:

[tex]\displaystyle\\ A + B = \frac{1}{45}\\\\ A + C = \frac{1}{60}\\\\ B + C = \frac{1}{90}\\ -------- ~~~\text{Adunam ecuatiile.}\\\\ A+B+A+C+B+C = \frac{1}{45}+\frac{1}{60}+\frac{1}{90}\\\\ 2A+2B+2C = \frac{1}{45}+\frac{1}{60}+\frac{1}{90}\\\\ \text{Calculam cmmmc al numerelor 60 si 90}\\ \text{fara 45 deoarece 45 este divizor al lui 90.}\\ 60 = 2 \times 30\\ 90 = 3\times 30\\ \text{cmmm } = 2\times3\times30 = \boxed{180} [/tex]


[tex]\displaystyle\\ 2A+2B+2C = \frac{1}{45}+\frac{1}{60}+\frac{1}{90}\\\\ 2(A+B+C) = \frac{4\times 1}{4\times45}+\frac{3\times1}{3\times60}+ \frac{2\times1}{2\times90}\\\\ 2(A+B+C) = \frac{4}{180}+\frac{3}{180}+ \frac{2}{180}\\\\ 2(A+B+C) = \frac{4+3+2}{180}\\\\ 2(A+B+C) = \frac{9}{180}\\\\ 2(A+B+C) = \frac{1}{20}~~~\Big|:2\\\\ A+B+C=\frac{1}{2\times20}\\\\ A+B+C=\frac{1}{40} [/tex]

⇒  A, B si C  consuma zilnic 1/40 din pasune.
⇒ A, B si C   consuma pasunea in 40 de zile



Alte întrebări interesante