Matematică, întrebare adresată de int91, 9 ani în urmă

Salut, am nevoie de ajutor la ex . 1059(explicatii pas cu pas, va rog).

Anexe:

Rayzen: Ai reusit sa il faci?
Rayzen: Raspunsul este a)
Dar nu stiu cum sa il fac.
Cu formula m(b-a) <= int -1^1 f(x)dx <= M(b-a)
nu merge fiindca m este 0..
int91: Inca nu .....
Rayzen: Uite rezolvarea aici:
https://www.quora.com/How-do-I-calculate-this-minimum-of-integral-displaystyle-underset-a-b-in-mathbb-R-min-int_-1-1-x-2-a-bx-2-dx/answer/Chirayu-Jain-38?__filter__=&__nsrc__=2&__snid3__=4599383360
int91: Mersi mult, Dan
Rayzen: Sunt mai multe rezolvari acolo.

Răspunsuri la întrebare

Răspuns de Rayzen
2

\displaystyle f =\int_{-1}^1(x^2-a-bx)^2\, dx\\ \\ \\ f'_a =\dfrac{d}{da}\left(\int_{-1}^1(x^2-a-bx)^2 dx\right) = \\ \\ = \int_{-1}^1\dfrac{d}{da}\Big[(x^2-a-bx)^2\Big]\, dx = \int_{-1}^12(x^2-a-bx)\cdot (-1)\, dx = \\ \\ =-2\int_{-1}^1(x^2-a-bx)\, dx = -2\cdot\Big( \dfrac{x^3}{3}-ax-\dfrac{bx^2}{2}\Big)\Big|_{-1}^1 = \\ \\ = -2\cdot \Big(\dfrac{2}{3}-2a\Big)\\ \\ \\ f_b' = \dfrac{d}{db}\int_{-1}^1(x^2-a-bx)^2\, dx = \int_{-1}^1 2(x^2-a-bx)\cdot (-x)\, dx =

\displaystyle = -2\int_{-1}^1x(x^2-a-bx)\, dx = -2\cdot \Big(\dfrac{x^4}{4}-\dfrac{ax^2}{2}-\dfrac{bx^3}{3}\Big)\Big|_{-1}^1 = \\ \\ = -2\cdot \Big(\dfrac{1}{4}-\dfrac{a}{2}-\dfrac{b}{3} - \dfrac{1}{4}+\dfrac{a}{2}-\dfrac{b}{3}\Big) = \dfrac{4b}{3}\\ \\ \\ \text{Facem }f_a ' \text{ si }f_b' = 0\\ \Rightarrow \dfrac{2}{3}-2a = 0 \text{ si }\dfrac{4b}{3} = 0 \Rightarrow a = \dfrac{1}{3} \text{ si }b = 0

\Rightarrow \displaystyle \underset{a,b\in \mathbb{R}}{\min}\int_{-1}^1(x^2-a-bx)^2\, dx= \int_{-1}^1\Big(x^2-\frac{1}{3}\Big)^2\, dx = \\ \\ = \int_{-1}^1\Big(x^4-\dfrac{2x^2}{3}+\dfrac{1}{9}\Big)\, dx = \Big(\dfrac{x^5}{5}-\dfrac{2x^3}{9}+\dfrac{x}{9}\Big)\Big|_{-1}^1 = \\ \\ =\dfrac{1}{5}-\dfrac{2}{9}+\dfrac{1}{9}+\dfrac{1}{5}-\dfrac{2}{9}+\dfrac{1}{9} = \boxed{\dfrac{8}{45}}

Alte întrebări interesante