Se considera f:R->R, f(x)=ax+b unde a si b sunt numere reale.
a)Se considera f:R->R, f(x)=ax+b unde a si b sunt numere reale.
b) aratati ca f(1)+f(4)=f(2)+f(3)
c) pentru a=2 si b= -4,aflati valorile numarului real m,stiind ca punctul M(2m+1;m la a doua + 1) se afla pe reprezentarea grafica a functiei f
va rog am nevoie urgent
Răspunsuri la întrebare
Răspuns de
2
Răspuns:
Explicație pas cu pas:
f(1)=a+b
f(4)=4a+b
f(2)=2a+b
f(3)=3a+b
f(1)+f(4) = a+b+4a+b=5a+2b
f(2)+f(3)=2a+b+3a+b=5a+2b
c) f(x) = 2x-4
M(2m+1;m²+1) ∈ Gf ⇔ f(2m+1)=m²+1 ⇔ 2(2m+1)-4= m²+1 ⇔
4m+2-4-m²-1=0 ⇔ -m²+4m-3=0 ⇔m²-4m+3=0
Δ=(-4)²-4*3=16-12=4
m1/m2 = (4±√4 )/2 => m1=1 si m2=3
haruwu:
mersiiii <3
Alte întrebări interesante
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
9 ani în urmă
Engleza,
9 ani în urmă