Matematică, întrebare adresată de adipop4428, 8 ani în urmă

Se consideră matricele $A=\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right), B=\left(\begin{array}{ll}2 & x \\ 3 & 0\end{array}\right)$ şi $C=\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)$, unde $x$ este număr real.

5p 1. Arătați că det $A=2$.

5 2 2. Determinați numărul real $x$ pentru care $B+C=A$.

5p 3. Determinați numărul real $x$ pentru care $\operatorname{det}(B-C)=0$.

5p 4. Demonstrați că $\operatorname{det}(B \cdot C-C \cdot B)=3 x(x-1)^{2}$, pentru orice număr real $x$.

5p 5. Pentru $x=1$, arătați că inversa matricei $B$ este matricea $\left(\begin{array}{cc}0 & \frac{1}{3} \\ 1 & -\frac{2}{3}\end{array}\right) .$

5p 6. Pentru $x=1$, rezolvați în $\mathcal{M}_{2}(\mathbb{R})$ ecuaţia $B \cdot X \cdot C=A$.

Răspunsuri la întrebare

Răspuns de AndreeaP
2

A=\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right)

B=\left(\begin{array}{ll}2 & x \\ 3 & 0\end{array}\right)

C=\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)

1)

Calculam detA, facand diferenta dintre produsul diagonalelor

detA=\left|\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right|=2-0=1

2)

B+C=A

\left(\begin{array}{ll}2 & x \\ 3 & 0\end{array}\right)+\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right)\\\\\left(\begin{array}{ll}2+x & x \\ 3 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right)

2+x=2

x=0

3)

det(B-C)=0

\left(\begin{array}{ll}2 & x \\ 3 & 0\end{array}\right)-\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2-x & x \\ 3 & -1\end{array}\right)\\\\\left|\begin{array}{ll}2-x & x \\ 3 & -1\end{array}\right|=0

-(2-x)-3x=0

-2+x-3x=0

-2-2x=0

2x=-2

x=-1

4)

det(BC-CB)=3x(x-1)²

B\cdot C=\left(\begin{array}{ll}2 & x \\ 3 & 0\end{array}\right)\cdot\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2x & x \\ 3x& 0\end{array}\right)

C\cdot B=\left(\begin{array}{ll}x & 0 \\ 0 & 1\end{array}\right)\cdot \left(\begin{array}{ll}2 & x \\ 3 & 0\end{array}\right)=\left(\begin{array}{ll}2x & x^2 \\ 3& 0\end{array}\right)

BC-CB=\left(\begin{array}{ll}2x & x \\ 3x& 0\end{array}\right)-\left(\begin{array}{ll}2x & x^2 \\ 3& 0\end{array}\right)=\left(\begin{array}{ll}0 &x- x^2 \\ 3x-3& 0\end{array}\right)

\left|\begin{array}{ll}0 &x- x^2 \\ 3x-3& 0\end{array}\right|=0-(x-x^2)(3x-3)=-3x(1-x)(x-1)=3x(x-1)^2

5)

x=1

Inversa unei matrice:

B^{-1}=\frac{1}{detB}\cdot B^*

detB=2×0-3×1=-3

Transpusa matricei B

B^t=\left(\begin{array}{ccc}2&3\\1&0\\\end{array}\right)

B^*=\left(\begin{array}{ccc}0&-1\\-3&2\\\end{array}\right)

(-1)^{i+j}× elementul care ramane dupa ce taiem linia si coloana pe care se afla termenul respectiv

B^{-1}=\frac{1}{-3} \left(\begin{array}{ccc}0&-1\\-3&2\\\end{array}\right)= \left(\begin{array}{ccc}0&\frac{1}{3} \\1&-\frac{2}{3} \\\end{array}\right)

6)

x=1

B·X·C=A

C=\left(\begin{array}{ccc}1&0\\0&1\end{array}\right)=I_2\\\\B\cdot X\cdot C=A\\\\B\cdot X=A\\\\X=B^{-1}\cdot A

B^{-1}\cdot A=\left(\begin{array}{ccc}0&\frac{1}{3} \\1&-\frac{2}{3} \\\end{array}\right)\cdot \left(\begin{array}{ccc}2&0 \\3&1 \\\end{array}\right)=\left(\begin{array}{ccc}1&\frac{1}{3} \\0&-\frac{2}{3} \\\end{array}\right)

Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/1857848

#BAC2022

#SPJ4

Alte întrebări interesante