Se consideră mulțimea A = {x ∈ R | |2x -1| ≤ 3 }
a)Arătați că 0 este element al mulțimii A
b)Scrieți mulțimea A sub formă de interval.
Ajutor!
Răspunsuri la întrebare
Răspuns de
7
Răspuns
Explicație pas cu pas:
|2x -1| = 0
2x - 1 = 0
x = 1/2
1/2 ∈ R si |2x -1| = |2*1/2 -1| = 0 ≤ 3
________
Capetele intervalului
2x - 1 = 3 deci x = 4/2 = 2
2x - 1 = -3 deci x = -2/2 = -1
Intervalul [-1; 2]
adrianalex2004:
Multumesc!
Răspuns de
4
a) A={x∈R| |2x-1|≤3}
|2x-1|≤3
|2×0-1|≤3(A)
|-1I≤3(A)
1≤3(A) ⇒0∈A
b) A={x∈R| |2x-1|≤3}
|2x-1|≤3
-3≤2x-1≤3 /+1
-2≤2x≤4 /:2
-1≤x≤2
A=[-1,2]
Alte întrebări interesante
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă